Phonon downconversion to suppress correlated errors in superconducting qubits

被引:40
作者
Iaia, V [1 ]
Ku, J. [1 ]
Ballard, A. [1 ]
Larson, C. P. [1 ]
Yelton, E. [1 ]
Liu, C. H. [2 ]
Patel, S. [2 ]
McDermott, R. [2 ]
Plourde, B. L. T. [1 ]
机构
[1] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA
[2] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
D O I
10.1038/s41467-022-33997-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum error correction can preserve quantum information in the presence of local errors, but correlated errors are fatal. For superconducting qubits, high-energy particle impacts from background radioactivity produce energetic phonons that travel throughout the substrate and create excitations above the superconducting ground state, known as quasiparticles, which can poison all qubits on the chip. We use normal metal reservoirs on the chip back side to downconvert phonons to low energies where they can no longer poison qubits. We introduce a pump-probe scheme involving controlled injection of pair-breaking phonons into the qubit chips. We examine quasiparticle poisoning on chips with and without back-side metallization and demonstrate a reduction in the flux of pair-breaking phonons by over a factor of 20. We use a Ramsey interferometer scheme to simultaneously monitor quasiparticle parity on three qubits for each chip and observe a two-order of magnitude reduction in correlated poisoning due to background radiation. High-energy particle impacts due to background or cosmic radiation have been identified as sources of correlated errors in superconducting qubit arrays. Iaia et al. achieve a suppression of correlated error rate by channeling the energy away from the qubits via a thick metal layer at the bottom of the chip.
引用
收藏
页数:7
相关论文
共 29 条
[1]  
Anthony-Petersen R, 2024, Arxiv, DOI arXiv:2208.02790
[2]  
Armengaud E., 2016, J COSMOL ASTROPARTIC, V2016, P019, DOI [10.1088/1475-7516/2016/05/019, DOI 10.1088/1475-7516/2016/05/019]
[3]   Fracture processes observed with a cryogenic detector [J].
Astrom, J. ;
Di Stefano, P. C. F. ;
Proebst, F. ;
Stodolsky, L. ;
Timonen, J. ;
Bucci, C. ;
Cooper, S. ;
Cozzini, C. ;
Feilitzsch, F. v. ;
Kraus, H. ;
Marchese, J. ;
Meier, O. ;
Nagel, U. ;
Ramachers, Y. ;
Seidel, W. ;
Sisti, M. ;
Uchaikin, S. ;
Zerle, L. .
PHYSICS LETTERS A, 2006, 356 (4-5) :262-266
[4]   Minimizing quasiparticle generation from stray infrared light in superconducting quantum circuits [J].
Barends, R. ;
Wenner, J. ;
Lenander, M. ;
Chen, Y. ;
Bialczak, R. C. ;
Kelly, J. ;
Lucero, E. ;
O'Malley, P. ;
Mariantoni, M. ;
Sank, D. ;
Wang, H. ;
White, T. C. ;
Yin, Y. ;
Zhao, J. ;
Cleland, A. N. ;
Martinis, John M. ;
Baselmans, J. J. A. .
APPLIED PHYSICS LETTERS, 2011, 99 (11)
[5]   Reducing the impact of radioactivity on quantum circuits in a deep-underground facility [J].
Cardani, L. ;
Valenti, F. ;
Casali, N. ;
Catelani, G. ;
Charpentier, T. ;
Clemenza, M. ;
Colantoni, I ;
Cruciani, A. ;
D'Imperio, G. ;
Gironi, L. ;
Gruenhaupt, L. ;
Gusenkova, D. ;
Henriques, F. ;
Lagoin, M. ;
Martinez, M. ;
Pettinari, G. ;
Rusconi, C. ;
Sander, O. ;
Tomei, C. ;
Ustinov, A., V ;
Weber, M. ;
Wernsdorfer, W. ;
Vignati, M. ;
Pirro, S. ;
Pop, I. M. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[6]   Relaxation and frequency shifts induced by quasiparticles in superconducting qubits [J].
Catelani, G. ;
Schoelkopf, R. J. ;
Devoret, M. H. ;
Glazman, L. I. .
PHYSICAL REVIEW B, 2011, 84 (06)
[7]   Anomalous charge noise in superconducting qubits [J].
Christensen, B. G. ;
Wilen, C. D. ;
Opremcak, A. ;
Nelson, J. ;
Schlenker, F. ;
Zimonick, C. H. ;
Faoro, L. ;
Ioffe, L. B. ;
Rosen, Y. J. ;
DuBois, J. L. ;
Plourde, B. L. T. ;
McDermott, R. .
PHYSICAL REVIEW B, 2019, 100 (14)
[8]   Phonon-Trapping-Enhanced Energy Resolution in Superconducting Single-Photon Detectors [J].
de Visser, Pieter J. ;
de Rooij, Steven A. H. ;
Murugesan, Vignesh ;
Thoen, David J. ;
Baselmans, Jochem J. A. .
PHYSICAL REVIEW APPLIED, 2021, 16 (03)
[9]   Surface codes: Towards practical large-scale quantum computation [J].
Fowler, Austin G. ;
Mariantoni, Matteo ;
Martinis, John M. ;
Cleland, Andrew N. .
PHYSICAL REVIEW A, 2012, 86 (03)
[10]   Phonon traps reduce the quasiparticle density in superconducting circuits [J].
Henriques, Fabio ;
Valenti, Francesco ;
Charpentier, Thibault ;
Lagoin, Marc ;
Gouriou, Clement ;
Martinez, Maria ;
Cardani, Laura ;
Vignati, Marco ;
Gruenhaupt, Lukas ;
Gusenkova, Daria ;
Ferrero, Julian ;
Skacel, Sebastian T. ;
Wernsdorfer, Wolfgang ;
Ustinov, Alexey, V ;
Catelani, Gianluigi ;
Sander, Oliver ;
Pop, Ioan M. .
APPLIED PHYSICS LETTERS, 2019, 115 (21)