The dual Orlicz-Brunn-Minkowski theory

被引:85
作者
Gardner, Richard J. [1 ]
Hug, Daniel [2 ]
Weil, Wolfgang [2 ]
Ye, Deping [3 ]
机构
[1] Western Washington Univ, Dept Math, Bellingham, WA 98225 USA
[2] Karlsruhe Inst Technol, Dept Math, D-76128 Karlsruhe, Germany
[3] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Star body; Orlicz-Brunn-Minkowski theory; M-addition; Orlicz addition; Radial addition; Brunn-Minkowski inequality; BUSEMANN-PETTY PROBLEM; MIXED VOLUMES; CONVEX; BODIES; SETS;
D O I
10.1016/j.jmaa.2015.05.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A first step towards a dual Orlicz-Brunn-Minkowski theory for star sets was taken by Zhu, Zhou, and Xue [44,45]. In this essentially independent work we provide a more general framework and results. A radial Orlicz addition of two or more star sets is proposed and a corresponding dual Orlicz-Brunn-Minkowski inequality is established. Based on a radial Orlicz linear combination of two star sets, a formula for the dual Orlicz mixed volume is derived and a corresponding dual Orlicz-Minkowski inequality proved. The inequalities proved yield as special cases the precise duals of the conjectured log-Brunn-Minkowski and log-Minkowski inequalities of Boroczky, Lutwak, Yang, and Zhang. A new addition of star sets called radial M-addition is also introduced and shown to relate to the radial Orlicz addition. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:810 / 829
页数:20
相关论文
共 46 条
[21]   THE CENTRO-AFFINE HADWIGER THEOREM [J].
Haberl, Christoph ;
Parapatits, Lukas .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 27 (03) :685-705
[22]   The even Orlicz Minkowski problem [J].
Haberl, Christoph ;
Lutwak, Erwin ;
Yang, Deane ;
Zhang, Gaoyong .
ADVANCES IN MATHEMATICS, 2010, 224 (06) :2485-2510
[23]  
Kechris A. S., 1995, CLASSICAL DESCRIPTIV, V156
[24]   Isomorphic properties of intersection bodies [J].
Koldobsky, A. ;
Paouris, G. ;
Zymonopoulou, M. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (09) :2697-2716
[25]   A NEW PROOF OF THE ORLICZ BUSEMANN-PETTY CENTROID INEQUALITY [J].
Li, Ai-Jun ;
Leng, Gangsong .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (04) :1473-1481
[26]   General affine surface areas [J].
Ludwig, Monika .
ADVANCES IN MATHEMATICS, 2010, 224 (06) :2346-2360
[27]  
LUTWAK E, 1993, J DIFFER GEOM, V38, P131
[28]   DUAL MIXED VOLUMES [J].
LUTWAK, E .
PACIFIC JOURNAL OF MATHEMATICS, 1975, 58 (02) :531-538
[29]   INTERSECTION BODIES AND DUAL MIXED VOLUMES [J].
LUTWAK, E .
ADVANCES IN MATHEMATICS, 1988, 71 (02) :232-261
[30]  
Lutwak E, 2010, J DIFFER GEOM, V84, P365