Fibroblast growth factor 14 is an intracellular modulator of voltage-gated sodium channels

被引:163
作者
Lou, JY
Laezza, F
Gerber, BR
Xiao, ML
Yamada, KA
Hartmann, H
Craig, AM
Nerbonne, JM
Ornitz, DM
机构
[1] Washington Univ, Sch Med, Dept Mol Biol & Pharmacol, St Louis, MO 63110 USA
[2] Washington Univ, Sch Med, Dept Anat & Neurobiol, St Louis, MO 63110 USA
[3] Washington Univ, Sch Med, Dept Med, St Louis, MO 63110 USA
[4] Univ Maryland, Ctr Med Biotechnol, Inst Biotechnol, Baltimore, MD 21201 USA
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2005年 / 569卷 / 01期
关键词
D O I
10.1113/jphysiol.2005.097220
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Genetic ablation of the fibroblast growth factor (Fgf) 14 gene in mice or a missense mutation in Fgf14 in humans causes ataxia and cognitive deficits. These phenotypes suggest that the neuronally expressed Fgf14 gene is essential for regulating normal neuronal activity. Here, we demonstrate that FGF14 interacts directly with multiple voltage-gated Na+ (Nav) channel alpha subunits heterologously expressed in non-neuronal cells or natively expressed in a murine neuroblastoma cell line. Functional studies reveal that these interactions result in the potent inhibition of Nav channel currents (I-Na) and in changes in the voltage dependence of channel activation and inactivation. Deletion of the unique amino terminus of the splice variant of Fgf14, Fgf14-1b, or expression of the splice variant Fgf14-1a modifies the modulatory effects on I-Na, suggesting an important role for the amino terminus domain of FGF14 in the regulation of Na-v channels. To investigate the function of FGF14 in neurones, we directly expressed Fgf14 in freshly isolated primary rat hippocampal neurones. In these cells, the addition of FGF14-1a-GFP or FGF14-1b-GFP increased INa density and shifted the voltage dependence of channel activation and inactivation. In fully differentiated neurones, FGF14-1a-GFP or FGF14-1b-GFP preferentially colocalized with endogenous Nav channels at the axonal initial segment, a critical region for action potential generation. Together, these findings implicate FGF14 as a unique modulator of Nav channel activity in the CNS and provide a possible mechanism to explain the neurological phenotypes observed in mice and humans with mutations in Fgf14.
引用
收藏
页码:179 / 193
页数:15
相关论文
共 44 条
[1]   Signals for sorting of transmembrane proteins to endosomes and lysosomes [J].
Bonifacino, JS ;
Traub, LM .
ANNUAL REVIEW OF BIOCHEMISTRY, 2003, 72 :395-447
[2]   Molecular mechanism of convergent regulation of brain Na+ channels by protein kinase C and protein kinase A anchored to AKAP-15 [J].
Cantrell, AR ;
Tibbs, VC ;
Yu, FH ;
Murphy, BJ ;
Sharp, EM ;
Qu, YS ;
Catterall, WA ;
Scheuer, T .
MOLECULAR AND CELLULAR NEUROSCIENCE, 2002, 21 (01) :63-80
[3]   Chloride channels activated by hypotonicity in N2A neuroblastoma cell line [J].
Carpaneto, A ;
Accardi, A ;
Piscietta, M ;
Gambale, F .
EXPERIMENTAL BRAIN RESEARCH, 1999, 124 (02) :193-199
[4]   Transmitter modulation of slow, activity-dependent alterations in sodium channel availability endows neurons with a novel form of cellular plasticity [J].
Carr, DB ;
Day, M ;
Cantrell, AR ;
Held, J ;
Scheuer, T ;
Catterall, WA ;
Surmeier, DJ .
NEURON, 2003, 39 (05) :793-806
[5]   From ionic currents to molecular mechanisms: The structure and function of voltage-gated sodium channels [J].
Catterall, WA .
NEURON, 2000, 26 (01) :13-25
[6]  
Colbert CM, 1996, J NEUROSCI, V16, P6676
[7]   Ion channel properties underlying axonal action potential initiation in pyramidal neurons [J].
Colbert, CM ;
Pan, EH .
NATURE NEUROSCIENCE, 2002, 5 (06) :533-538
[8]   Mutation analysis in the fibroblast growth factor 14 gene:: frameshift mutation and polymorphisms in patients with inherited ataxias [J].
Dalski, A ;
Atici, J ;
Kreuz, FR ;
Hellenbroich, Y ;
Schwinger, E ;
Zühlke, C .
EUROPEAN JOURNAL OF HUMAN GENETICS, 2005, 13 (01) :118-120
[9]   NaN/Nav1.9:: a sodium channel with unique properties [J].
Dib-Hajj, S ;
Black, JA ;
Cummins, TR ;
Waxman, SG .
TRENDS IN NEUROSCIENCES, 2002, 25 (05) :253-259
[10]   NaN, a novel voltage-gated Na channel, is expressed preferentially in peripheral sensory neurons and down-regulated after axotomy [J].
Dib-Hajj, SD ;
Tyrrell, L ;
Black, JA ;
Waxman, SG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (15) :8963-8968