Impact of oxidation morphology on reduced graphene oxides upon thermal annealing

被引:17
作者
Antidormi, Aleandro [1 ,2 ]
Roche, Stephan [1 ,2 ,3 ]
Colombo, Luciano [4 ]
机构
[1] CSIC, Catalan Inst Nanosci & Nanotechnol ICN2, Campus UAB, E-08193 Barcelona, Spain
[2] BIST, Campus UAB, E-08193 Barcelona, Spain
[3] ICREA Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain
[4] Univ Cagliari, Dipartimento Fis, I-09042 Monserrato, CA, Italy
来源
JOURNAL OF PHYSICS-MATERIALS | 2020年 / 3卷 / 01期
关键词
reduced graphene oxide; thermal annealing; thermal reduction; oxygenation; REACTIVE FORCE-FIELD; ATOMIC OXYGEN; REAXFF; TRANSPARENT; EXFOLIATION; SIMULATIONS; REDUCTION; EVOLUTION; MOBILITY; ENERGY;
D O I
10.1088/2515-7639/ab5ef2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Thermal reduction of graphene oxide (GO) is an essential technique to produce low-cost and higher quality graphene-based materials and composites used today in a plethora of applications. However, despite a demonstrated efficiency of high-temperature annealing in reducing the oxygen content of GO, the impact of the morphology of the initially oxidized samples on the restored sp(2) graphene plane versus remaining sp(3) imperfections remains unclear and out-of-control. Here using classical molecular dynamics, we simulate the process of thermal reduction on several GO samples for a variety of initial conditions and elucidate how both the concentration of oxygen functional groups and their spatial distribution jeopardize the reduction process efficiency. Our simulations suggest thermal annealing strategies to further optimize the crystallinity of reduced GO, enhancing their transport properties and hence making the resulting composites even more performant for electronic applications.
引用
收藏
页数:12
相关论文
共 49 条
[1]  
Bagri A, 2010, NAT CHEM, V2, P581, DOI [10.1038/NCHEM.686, 10.1038/nchem.686]
[2]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[3]   Thermoelectric Properties of Thermally Reduced Graphene Oxide Observed by Tuning the Energy States [J].
Bark, Hyunwoo ;
Ko, Museok ;
Lee, Mijung ;
Lee, Wonmok ;
Hong, Byunghee ;
Lee, Hyunjung .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (06) :7468-7474
[4]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[5]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[6]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/NPHOTON.2010.186, 10.1038/nphoton.2010.186]
[7]   Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage [J].
Bonaccorso, Francesco ;
Colombo, Luigi ;
Yu, Guihua ;
Stoller, Meryl ;
Tozzini, Valentina ;
Ferrari, Andrea C. ;
Ruoff, Rodney S. ;
Pellegrini, Vittorio .
SCIENCE, 2015, 347 (6217)
[8]   Methods for data-driven multiscale model discovery for materials [J].
Brunton, Steven L. ;
Kutz, J. Nathan .
JOURNAL OF PHYSICS-MATERIALS, 2019, 2 (04)
[9]   Two-dimensional graphene analogues for biomedical applications [J].
Chen, Yu ;
Tan, Chaoliang ;
Zhang, Hua ;
Wang, Lianzhou .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (09) :2681-2701
[10]   Simulations on the thermal decomposition of a poly(dimethylsiloxane) polymer using the ReaxFF reactive force field [J].
Chenoweth, K ;
Cheung, S ;
van Duin, ACT ;
Goddard, WA ;
Kober, EM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (19) :7192-7202