On non-Newtonian fluids with a property of rapid thickening under different stimulus

被引:71
作者
Gwiazda, Piotr [1 ]
Swierczewska-Gwiazda, Agnieszka [1 ]
机构
[1] Univ Warsaw, Inst Appl Math & Mech, PL-00325 Warsaw, Poland
关键词
non-Newtonian fluids; magnetorheological fluids; shear thickening fluids; Orlicz spaces; modular convergence; energy equality; Young measures;
D O I
10.1142/S0218202508002954
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper concerns the model of a flow of non-Newtonian fluid with nonstandard growth conditions of the Cauchy stress tensor. Contrary to standard power-law type rheology, we propose the formulation with the help of the spatially-dependent convex function. This framework includes e. g. rapidly shear thickening and magnetorheological fluids. We provide the existence of weak solutions. The nonstandard growth conditions yield the analytical formulation of the problem in generalized Orlicz spaces. Basing on the energy equality, we exploit the tools of Young measures.
引用
收藏
页码:1073 / 1092
页数:20
相关论文
共 23 条
[1]  
BALL JM, 1989, LECT NOTES PHYS, V344, P207
[2]   Mathematical modeling of magnetorheological fluids [J].
Brigadnov, IA ;
Dorfmann, A .
CONTINUUM MECHANICS AND THERMODYNAMICS, 2005, 17 (01) :29-42
[3]   INHOMOGENEOUS ORLICZ-SOBOLEV SPACES AND NONLINEAR PARABOLIC INITIAL VALUE-PROBLEMS [J].
DONALDSON, T .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1974, 16 (02) :201-256
[4]   An experimental study of MR dampers for seismic protection [J].
Dyke, SJ ;
Spencer, BF ;
Sain, MK ;
Carlson, JD .
SMART MATERIALS & STRUCTURES, 1998, 7 (05) :693-703
[5]   Parabolic equations in Orlicz spaces [J].
Elmahi, A ;
Meskine, D .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2005, 72 :410-428
[6]  
Gr??ger, 1974, NICHTLINEARE OPERATO
[7]   On elliptic and parabolic systems with x-dependent multivalued graphs [J].
Gwiazda, Piotr ;
Zatorska-Goldstein, Anna .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2007, 30 (02) :213-236
[8]  
HOUGHTON JM, 2007, P SAMPE 200 IN PRESS
[9]  
HUDZIK H, 1980, FUNCTIONES APPROXIMA, V9, P29
[10]  
Malek J, 2005, HBK DIFF EQUAT EVOL, V2, P371