Real-Time Emotion Recognition Using Deep Learning Algorithms

被引:0
|
作者
El Mettiti, Abderrahmane [1 ]
Oumsis, Mohammed [1 ,2 ]
Chehri, Abdellah [3 ]
Saadane, Rachid [4 ]
机构
[1] Mohammed V Univ, LRIT Lab, Rabat, Morocco
[2] Mohammed V Univ, High Sch Technol, Rabat, Morocco
[3] Royal Mil Coll Canada, Dept Math & Comp Sci, Kingston, ON, Canada
[4] Hassania Sch Publ Works, Lab Engn Syst SIRC LAGeS EHTP, Casablanca, Morocco
关键词
IoT; Big Data Infrastructure; 5G and 6G networks; Emotion Recognition; Deep Learning; FACIAL EXPRESSION; GENETIC ALGORITHM; SPEECH; SYSTEM;
D O I
10.1109/VTC2022-Fall57202.2022.10012772
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Machine learning (ML) and deep learning (DL) techniques have been used to study the changes in human physiological and non-physiological properties. DL has proven his efficiency when perceiving positive emotions (joy, surprise, pride, emotion) and negative emotions (anger, sadness, fear, disgust). Furthermore, the DL is used to identify the emotions accordingly. First, this paper describes the different DL and ML algorithms applied in the emotion recognition field. Then, as a perspective, it proposes a three-layered emotion recognition architecture that leverages the massive data generated by IoT devices such as mobile phones, smart homes, and health monitoring. Finally, the potential of emerging technologies, such as 5G and 6G communication systems in a parallel Big Data infrastructure, were discussed.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Real-time speech emotion recognition using deep learning and data augmentation
    Barhoumi, Chawki
    Benayed, Yassine
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 58 (02)
  • [2] Real-time Yoga recognition using deep learning
    Yadav, Santosh Kumar
    Singh, Amitojdeep
    Gupta, Abhishek
    Raheja, Jagdish Lal
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (12): : 9349 - 9361
  • [3] Real-time Yoga recognition using deep learning
    Santosh Kumar Yadav
    Amitojdeep Singh
    Abhishek Gupta
    Jagdish Lal Raheja
    Neural Computing and Applications, 2019, 31 : 9349 - 9361
  • [4] Real-time Facemask Recognition Using Deep Learning
    Sasikumar, R.
    Shanmugaraja, P.
    Kailash, K.
    Reddy, M. Prudhvi Charan
    Jagadeesh, S. Nikhil
    REVISTA GEINTEC-GESTAO INOVACAO E TECNOLOGIAS, 2021, 11 (02): : 2079 - 2085
  • [5] Deep Learning-Based Emotion Recognition from Real-Time Videos
    Zhou, Wenbin
    Cheng, Justin
    Lei, Xingyu
    Benes, Bedrich
    Adamo, Nicoletta
    HUMAN-COMPUTER INTERACTION. MULTIMODAL AND NATURAL INTERACTION, HCI 2020, PT II, 2020, 12182 : 321 - 332
  • [6] Real-Time Traffic Sign Recognition Using Deep Learning
    Shivayogi, Ananya Belagodu
    Dharmendra, Nehal Chakravarthy Matasagara
    Ramakrishna, Anala Maddur
    Subramanya, Kolala Nagaraju
    PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY, 2023, 31 (01): : 137 - 148
  • [7] Towards Real-time Speech Emotion Recognition using Deep Neural Networks
    Fayek, H. M.
    Lech, M.
    Cavedon, L.
    2015 9TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ICSPCS), 2015,
  • [8] Real-Time Facemask Recognition with Alarm System using Deep Learning
    Militante, Sammy, V
    Dionisio, Nanette, V
    2020 11TH IEEE CONTROL AND SYSTEM GRADUATE RESEARCH COLLOQUIUM (ICSGRC), 2020, : 106 - 110
  • [9] Real-time Jordanian license plate recognition using deep learning
    Alghyaline, Salah
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2022, 34 (06) : 2601 - 2609
  • [10] Real-Time Human Action Recognition Using Deep Learning Architecture
    Kahlouche, Souhila
    Belhocine, Mahmoud
    Menouar, Abdallah
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS, 2021, 20 (04)