Homotopy analysis method for solving linear and nonlinear fractional diffusion-wave equation

被引:133
|
作者
Jafari, H. [1 ]
Seifi, S. [1 ]
机构
[1] Univ Mazandaran, Dept Math & Comp Sci, Babol Sar, Iran
关键词
Fractional partial differential equation; Fractional diffusion-wave equation; Homotopy analysis method; Caputo fractional derivative; Mittag-Leffler function;
D O I
10.1016/j.cnsns.2008.05.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we adopt the homotopy analysis method (HAM) to obtain solutions of linear and nonlinear fractional diffusion and wave equation. The fractional derivative is described in the Caputo sense. Some illustrative examples are presented. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:2006 / 2012
页数:7
相关论文
共 50 条
  • [1] Homotopy analysis method for solving multi-term linear and nonlinear diffusion-wave equations of fractional order
    Jafari, H.
    Golbabai, A.
    Seifi, S.
    Sayevand, K.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (03) : 1337 - 1344
  • [2] On the Solution of the Nonlinear Fractional Diffusion-Wave Equation with Absorption: a Homotopy Approach
    Mishra, Vivek
    Vishal, Kumar
    Das, Subir
    Ong, Seng Huat
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2014, 69 (3-4): : 135 - 144
  • [3] A computational method for solving variable-order fractional nonlinear diffusion-wave equation
    Heydari, Mohammad Hossein
    Avazzadeh, Zakieh
    Yang, Yin
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 352 : 235 - 248
  • [4] Application of the Laplace decomposition method for solving linear and nonlinear fractional diffusion-wave equations
    Jafari, H.
    Khalique, C. M.
    Nazari, M.
    APPLIED MATHEMATICS LETTERS, 2011, 24 (11) : 1799 - 1805
  • [5] A meshless method for time fractional nonlinear mixed diffusion and diffusion-wave equation
    Bhardwaj, Akanksha
    Kumar, Alpesh
    APPLIED NUMERICAL MATHEMATICS, 2021, 160 (160) : 146 - 165
  • [6] Sumudu transform method for solving fractional differential equations and fractional Diffusion-Wave equation
    Darzi, Rahmat
    Mohammadzade, Bahar
    Mousavi, Sahar
    Beheshti, Rozita
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2013, 6 (01): : 79 - 84
  • [7] Analysis of a meshless method for the time fractional diffusion-wave equation
    Mehdi Dehghan
    Mostafa Abbaszadeh
    Akbar Mohebbi
    Numerical Algorithms, 2016, 73 : 445 - 476
  • [8] Analysis of a meshless method for the time fractional diffusion-wave equation
    Dehghan, Mehdi
    Abbaszadeh, Mostafa
    Mohebbi, Akbar
    NUMERICAL ALGORITHMS, 2016, 73 (02) : 445 - 476
  • [9] Wavelets method for the time fractional diffusion-wave equation
    Heydari, M. H.
    Hooshmandasl, M. R.
    Ghaini, F. M. Maalek
    Cattani, C.
    PHYSICS LETTERS A, 2015, 379 (03) : 71 - 76
  • [10] Solution of nonlinear fractional diffusion-wave equation by traingular functions
    Ebadian A.
    Fazli H.R.
    Khajehnasiri A.A.
    SeMA Journal, 2015, 72 (1) : 37 - 46