Existence results for impulsive dynamic equations on time scales with nonlocal initial conditions

被引:20
作者
Chang, YK [1 ]
Li, WT
机构
[1] Lanzhou Jiaotong Univ, Sch Math Phys & Software Engn, Lanzhou 730070, Gansu, Peoples R China
[2] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
impulsive dynamic equations; time scales; nonlocal initial conditions; fixed point;
D O I
10.1016/j.mcm.2005.12.015
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we shall give some existence results for a certain class of first order impulsive dynamic equations on time scales with nonlocal initial conditions. The approach used is the Sadoviskii's fixed point theorem. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:377 / 384
页数:8
相关论文
共 21 条
[1]  
Agarwal RP, 2001, NONLINEAR ANAL-THEOR, V44, P527
[2]   Existence of solutions to boundary value problems for dynamic systems on time scales [J].
Amster, P ;
Rogers, C ;
Tisdell, CC .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 308 (02) :565-577
[3]  
[Anonymous], 2004, MONOGRAPHS TXB PURE
[4]   First- and second-order dynamic equations with impulse [J].
Atici, F. M. ;
Biles, D. C. .
ADVANCES IN DIFFERENCE EQUATIONS, 2005, 2005 (02) :119-132
[5]   Existence results for second order boundary value problem of impulsive dynamic equations on time scales [J].
Benchohra, M ;
Ntouyas, SK ;
Ouahab, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 296 (01) :65-73
[6]   On first order impulsive dynamic equations on time scales [J].
Benchohra, M ;
Henderson, J ;
Ntouyas, SK ;
Ouahab, A .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2004, 10 (06) :541-548
[7]   First and second order linear dynamic equations on time scales [J].
Bohner, M ;
Peterson, A .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2001, 7 (06) :767-792
[8]  
Bohner M., 2001, Dynamic Equations on Time Scales: AnIntroduction With Applications, DOI DOI 10.1007/978-1-4612-0201-1
[9]   First-order differential inclusions with nonlocal initial conditions [J].
Boucherif, A .
APPLIED MATHEMATICS LETTERS, 2002, 15 (04) :409-414
[10]   THEOREMS ABOUT THE EXISTENCE AND UNIQUENESS OF SOLUTIONS OF A SEMILINEAR EVOLUTION NONLOCAL CAUCHY-PROBLEM [J].
BYSZEWSKI, L .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 162 (02) :494-505