Pyrazine and crown ethers: functional covalent organic polymers for (solar-assisted) high capacity and rate performance lithium-organic battery

被引:6
作者
Cao, X. [1 ]
Shi, Q. [1 ]
Feng, Y. [2 ]
Zhang, X. [2 ]
Zhou, E. [2 ]
Zhu, L. [2 ,4 ]
Wang, Y. [1 ,2 ,3 ]
机构
[1] Fuzhou Univ, Coll Chem, Fuzhou 350116, Fujian, Peoples R China
[2] Chinese Acad Sci, Fujian Inst Res Struct Matter, State Key Lab Struct Chem, CAS Key Lab Design & Assembly Funct Nanostruct,Fu, Fuzhou 350002, Fujian, Peoples R China
[3] Fujian Sci & Technol Innovat Lab Optoelect Inform, Fuzhou 350108, Fujian, Peoples R China
[4] Anhui Univ Technol, Sch Chem & Chem Engn, Maanshan 243032, Peoples R China
基金
中国国家自然科学基金;
关键词
Covalent-organic-polymer; Crown-ether; Cathode material; Photoelectric conversion; Energy storage; RECHARGEABLE LITHIUM; CATHODE MATERIALS; ENERGY-STORAGE; FRAMEWORKS; NANOSHEETS;
D O I
10.1016/j.mtchem.2022.101082
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Multifunctional two-dimensional (2D) covalent organic polymers (COPs) benefiting from unique features display great potential in lithium-organic batteries yet are rarely reported. In this work, we fabricate a novel conjugated polymer (TQ-COP) functioned with flexible crown ethers and pyrazine redox-active sites, used as an organic rechargeable battery cathode. The Fourier transform infrared spectroscopy (FT-IR) and C-13 cross-polarization and magic-angle spinning nuclear magnetic resonance (MAS NMR) verify the chemical identity of redox-active units formed during polymerization. In this structure, pyrazine-redox components exhibit a maximum six-electron transfer per active site, resulting in an initial specific capacity of 162 mA h/g( 20 mA/g). Because of macrocyclic cavities and preferential coordination with the alkali metal ions of crown ethers, the rate determining step is changed into a charge transfer process, urging TQ-COP to emerge with a superior rate performance (132 mA h/g at 2 C, 81% vs. 0.1 C). Furthermore, the introduction of crown ethers facilitates photo-excited charge-carriers transfer by narrowing the HOMO-LUMO gap, rendering a photo-assisted lithium-organic battery with significant photovoltage responses and similar to 10% improvement of battery round-trip efficiency under illumination, demonstrating its promising capability of solar energy utilization. This work proposes new insights into multifunctional COPs for advanced lithium-organic batteries. (C) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 54 条
[1]   Construction of Covalent Organic Frameworks with Crown Ether Struts [J].
An, Shuhao ;
Xu, Qing ;
Ni, Zhihui ;
Hu, Jun ;
Peng, Changjun ;
Zhai, Lipeng ;
Guo, Yu ;
Liu, Honglai .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (18) :9959-9963
[2]   Designs and applications of multi-functional covalent organic frameworks in rechargeable batteries [J].
An, Yongkang ;
Tan, Shuangshuang ;
Liu, Yu ;
Zhu, Kai ;
Hu, Lei ;
Rong, Yaoguang ;
An, Qinyou .
ENERGY STORAGE MATERIALS, 2021, 41 :354-379
[3]   Integrating single Ni sites into biomimetic networks of covalent organic frameworks for selective photoreduction of CO2 [J].
Chen, Xin ;
Dang, Qiang ;
Sa, Rongjian ;
Li, Liuyi ;
Li, Lingyun ;
Bi, Jinhong ;
Zhang, Zizhong ;
Long, Jinlin ;
Yu, Yan ;
Zou, Zhigang .
CHEMICAL SCIENCE, 2020, 11 (26) :6915-6922
[4]  
Chen YY, 2022, CHIN J STRUCT CHEM, V41, P2204001, DOI 10.14102/j.cnki.0254-5861.2022-0013
[5]   A perspective on sustainable energy materials for lithium batteries [J].
Cheng, Xin-Bing ;
Liu, He ;
Yuan, Hong ;
Peng, Hong-Jie ;
Tang, Cheng ;
Huang, Jia-Qi ;
Zhang, Qiang .
SUSMAT, 2021, 1 (01) :38-50
[6]   The atom, the molecule, and the covalent organic framework [J].
Diercks, Christian S. ;
Yaghi, Omar M. .
SCIENCE, 2017, 355 (6328)
[7]   Redox-triggered switching in three-dimensional covalent organic frameworks [J].
Gao, Chao ;
Li, Jian ;
Yin, Sheng ;
Sun, Junliang ;
Wang, Cheng .
NATURE COMMUNICATIONS, 2020, 11 (01)
[8]   Covalent Organic Frameworks: Design, Synthesis, and Functions [J].
Geng, Keyu ;
He, Ting ;
Liu, Ruoyang ;
Dalapati, Sasanka ;
Tan, Ke Tian ;
Li, Zhongping ;
Tao, Shanshan ;
Gong, Yifan ;
Jiang, Qiuhong ;
Jiang, Donglin .
CHEMICAL REVIEWS, 2020, 120 (16) :8814-8933
[9]   Chemically stable polyarylether-based covalent organic frameworks [J].
Guan, Xinyu ;
Li, Hui ;
Ma, Yunchao ;
Xue, Ming ;
Fang, Qianrong ;
Yan, Yushan ;
Valtchev, Valentin ;
Qiu, Shilun .
NATURE CHEMISTRY, 2019, 11 (06) :587-594
[10]   Polymer-Based Batteries-Flexible and Thin Energy Storage Systems [J].
Hager, Martin D. ;
Esser, Birgit ;
Feng, Xinliang ;
Schuhmann, Wolfgang ;
Theato, Patrick ;
Schubert, Ulrich S. .
ADVANCED MATERIALS, 2020, 32 (39)