Quantum dots to monitor RNAi delivery and improve gene silencing

被引:134
作者
Chen, AA
Derfus, AM
Khetani, SR
Bhatia, SN
机构
[1] MIT, Harvard Mit Div Hlth Sci & Technol, Cambridge, MA 02139 USA
[2] Univ Calif San Diego, Dept Bioengn, San Diego, CA 92103 USA
[3] Brigham & Womens Hosp, Div Med, Boston, MA 02115 USA
关键词
D O I
10.1093/nar/gni188
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A critical issue in using RNA interference for identifying genotype/phenotype correlations is the uniformity of gene silencing within a cell population. Variations in transfection efficiency, delivery-induced cytotoxicity and 'off target' effects at high siRNA concentrations can confound the interpretation of functional studies. To address this problem, we have developed a novel method of monitoring siRNA delivery that combines unmodified siRNA with seminconductor quantum dots (QDs) as multi color biological probes. We co-transfected siRNA with QDs using standard transfection techniques, thereby leveraging the photostable fluorescent nanoparticles to track delivery of nucleic acid, sort cells by degree of transfection and purify homogenously-silenced subpopulations. Compared to alternative RNAi tracking methods (co-delivery of reporter plasmids and end-labeling the siRNA), QDs exhibit superior photostability and tunable optical properties for an extensive selection of non-overlapping colors. Thus this simple, modular system can be extended toward multiplexed gene knockdown studies, as demonstrated in a two color proof-of-principle study with two biological targets. When the method was applied to investigate the functional role of T-cadherin (T-cad) in cell-cell communication, a subpopulation of highly silenced cells obtained by QD labeling was required to observe significant downstream effects of gene knockdown.
引用
收藏
页数:8
相关论文
共 44 条
[1]   Hypoxic inhibition of 3-methylcholanthrene-induced CYP1A1 expression is independent of HIF-1 alpha [J].
Allen, JW ;
Johnson, RS ;
Bhatia, SN .
TOXICOLOGY LETTERS, 2005, 155 (01) :151-159
[2]   Xenobiotic metabolism by cultured primary porcine hepatocytes [J].
Behnia, K ;
Bhatia, S ;
Jastromb, N ;
Balis, U ;
Sullivan, S ;
Yarmush, M ;
Toner, M .
TISSUE ENGINEERING, 2000, 6 (05) :467-479
[3]   Effect of cell-cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells [J].
Bhatia, SN ;
Balis, UJ ;
Yarmush, ML ;
Toner, M .
FASEB JOURNAL, 1999, 13 (14) :1883-1900
[4]   Genome-wide RNAi analysis of growth and viability in Drosophila cells [J].
Boutros, M ;
Kiger, AA ;
Armknecht, S ;
Kerr, K ;
Hild, M ;
Koch, B ;
Haas, SA ;
Paro, R ;
Perrimon, N .
SCIENCE, 2004, 303 (5659) :832-835
[5]   Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J].
Chan, WCW ;
Nie, SM .
SCIENCE, 1998, 281 (5385) :2016-2018
[6]   Genomewide view of gene silencing by small interfering RNAs [J].
Chi, JT ;
Chang, HY ;
Wang, NN ;
Chang, DS ;
Dunphy, N ;
Brown, PO .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (11) :6343-6346
[7]   Visualizing a correlation between siRNA localization, cellular uptake, and RNAi in living cells [J].
Chiu, YL ;
Ali, A ;
Chu, CY ;
Cao, H ;
Rana, TM .
CHEMISTRY & BIOLOGY, 2004, 11 (08) :1165-1175
[8]   (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites [J].
Dabbousi, BO ;
RodriguezViejo, J ;
Mikulec, FV ;
Heine, JR ;
Mattoussi, H ;
Ober, R ;
Jensen, KF ;
Bawendi, MG .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (46) :9463-9475
[9]   Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking [J].
Dahan, M ;
Lévi, S ;
Luccardini, C ;
Rostaing, P ;
Riveau, B ;
Triller, A .
SCIENCE, 2003, 302 (5644) :442-445
[10]   Intracellular delivery of quantum dots for live cell labeling and organelle tracking [J].
Derfus, AM ;
Chan, WCW ;
Bhatia, SN .
ADVANCED MATERIALS, 2004, 16 (12) :961-+