Generalized Boundary Conditions for the Time-Fractional Advection Diffusion Equation

被引:20
|
作者
Povstenko, Yuriy [1 ]
机构
[1] Jan Dlugosz Univ Czestochowa, Inst Math & Comp Sci, PL-42200 Czestochowa, Poland
关键词
fractional calculus; non-Fickian diffusion; fractional advection diffusion equation; complex systems; nonperfect contact conditions; HEAT-CONDUCTION; ANOMALOUS DIFFUSION; ENTROPY; DISPERSION; TSALLIS;
D O I
10.3390/e17064028
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The different kinds of boundary conditions for standard and fractional diffusion and advection diffusion equations are analyzed. Near the interface between two phases there arises a transition region which state differs from the state of contacting media owing to the different material particle interaction conditions. Particular emphasis has been placed on the conditions of nonperfect diffusive contact for the time-fractional advection diffusion equation. When the reduced characteristics of the interfacial region are equal to zero, the conditions of perfect contact are obtained as a particular case.
引用
收藏
页码:4028 / 4039
页数:12
相关论文
共 50 条
  • [31] Existence and uniqueness results for a time-fractional nonlinear diffusion equation
    Plociniczak, Lukasz
    Switala, Mateusz
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 462 (02) : 1425 - 1434
  • [32] An enriched finite element method to fractional advection-diffusion equation
    Luan, Shengzhi
    Lian, Yanping
    Ying, Yuping
    Tang, Shaoqiang
    Wagner, Gregory J.
    Liu, Wing Kam
    COMPUTATIONAL MECHANICS, 2017, 60 (02) : 181 - 201
  • [33] Approximation of Caputo-Prabhakar derivative with application in solving time fractional advection-diffusion equation
    Singh, Deeksha
    Sultana, Farheen
    Pandey, Rajesh K.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2022, 94 (07) : 896 - 919
  • [34] Convolution kernel determination problem for the time-fractional diffusion equation
    Durdiev, D. K.
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 457
  • [35] Fractional diffusion equation, boundary conditions and surface effects
    Lenzi, E. K.
    Tateishi, A. A.
    Ribeiro, H. V.
    Lenzi, M. K.
    Goncalves, G.
    da Silva, L. R.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2014,
  • [36] Boundary conditions for fractional diffusion
    Baeumer, Boris
    Kovacs, Mihaly
    Meerschaert, Mark M.
    Sankaranarayanan, Harish
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 336 : 408 - 424
  • [37] A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation
    Wei, Ting
    Wang, Jungang
    APPLIED NUMERICAL MATHEMATICS, 2014, 78 : 95 - 111
  • [38] Two Approaches to Obtaining the Space-Time Fractional Advection-Diffusion Equation
    Povstenko, Yuriy
    Kyrylych, Tamara
    ENTROPY, 2017, 19 (07)
  • [39] Anomalous diffusion and fractional advection-diffusion equation
    Chang, FX
    Chen, J
    Huang, W
    ACTA PHYSICA SINICA, 2005, 54 (03) : 1113 - 1117
  • [40] Identification of time-dependent convection coefficient in a time-fractional diffusion equation
    Sun, Liangliang
    Yan, Xiongbin
    Wei, Ting
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 346 : 505 - 517