Generalized Boundary Conditions for the Time-Fractional Advection Diffusion Equation

被引:20
作者
Povstenko, Yuriy [1 ]
机构
[1] Jan Dlugosz Univ Czestochowa, Inst Math & Comp Sci, PL-42200 Czestochowa, Poland
关键词
fractional calculus; non-Fickian diffusion; fractional advection diffusion equation; complex systems; nonperfect contact conditions; HEAT-CONDUCTION; ANOMALOUS DIFFUSION; ENTROPY; DISPERSION; TSALLIS;
D O I
10.3390/e17064028
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The different kinds of boundary conditions for standard and fractional diffusion and advection diffusion equations are analyzed. Near the interface between two phases there arises a transition region which state differs from the state of contacting media owing to the different material particle interaction conditions. Particular emphasis has been placed on the conditions of nonperfect diffusive contact for the time-fractional advection diffusion equation. When the reduced characteristics of the interfacial region are equal to zero, the conditions of perfect contact are obtained as a particular case.
引用
收藏
页码:4028 / 4039
页数:12
相关论文
共 59 条
[51]   Tsallis Relative Entropy and Anomalous Diffusion [J].
Prehl, Janett ;
Essex, Christopher ;
Hoffmann, Karl Heinz .
ENTROPY, 2012, 14 (04) :701-716
[52]   The Sinc-Legendre collocation method for a class of fractional convection-diffusion equations with variable coefficients [J].
Saadatmandi, Abbas ;
Dehghan, Mehdi ;
Azizi, Mohammad-Reza .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (11) :4125-4136
[53]   Use of a variable-index fractional-derivative model to capture transient dispersion in heterogeneous media [J].
Sun, HongGuang ;
Zhang, Yong ;
Chen, Wen ;
Reeves, Donald M. .
JOURNAL OF CONTAMINANT HYDROLOGY, 2014, 157 :47-58
[54]  
Uchaikin V.V., 2013, FRACTIONAL DERIVATIV, DOI DOI 10.1007/978-3-642-33911-0
[55]  
van Kampen N G., 1981, Stochastic Processes in Physics and Chemistry
[56]  
Vekua I.N., 1982, SOME GEN METHODS CON
[57]  
Ventsel E, 2001, THIN PLATES SHELLS T
[58]   Chaos, fractional kinetics, and anomalous transport [J].
Zaslavsky, GM .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 371 (06) :461-580
[59]   Finite element method for two-dimensional time-fractional tricomi-type equations [J].
Zhang, Xindong ;
Huang, Pengzhan ;
Feng, Xinlong ;
Wei, Leilei .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2013, 29 (04) :1081-1096