Generalized Boundary Conditions for the Time-Fractional Advection Diffusion Equation

被引:20
作者
Povstenko, Yuriy [1 ]
机构
[1] Jan Dlugosz Univ Czestochowa, Inst Math & Comp Sci, PL-42200 Czestochowa, Poland
关键词
fractional calculus; non-Fickian diffusion; fractional advection diffusion equation; complex systems; nonperfect contact conditions; HEAT-CONDUCTION; ANOMALOUS DIFFUSION; ENTROPY; DISPERSION; TSALLIS;
D O I
10.3390/e17064028
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The different kinds of boundary conditions for standard and fractional diffusion and advection diffusion equations are analyzed. Near the interface between two phases there arises a transition region which state differs from the state of contacting media owing to the different material particle interaction conditions. Particular emphasis has been placed on the conditions of nonperfect diffusive contact for the time-fractional advection diffusion equation. When the reduced characteristics of the interfacial region are equal to zero, the conditions of perfect contact are obtained as a particular case.
引用
收藏
页码:4028 / 4039
页数:12
相关论文
共 59 条
[21]   Analysis of the solutions of coupled nonlinear fractional reaction-diffusion equations [J].
Gafiychuk, V. ;
Datsko, B. ;
Meleshko, V. ;
Blackmore, D. .
CHAOS SOLITONS & FRACTALS, 2009, 41 (03) :1095-1104
[22]   Analytical modelling of fractional advection-dispersion equation defined in a bounded space domain [J].
Golbabai, A. ;
Sayevand, K. .
MATHEMATICAL AND COMPUTER MODELLING, 2011, 53 (9-10) :1708-1718
[23]   Fractional diffusion and entropy production [J].
Hoffmann, KH ;
Essex, C ;
Schulzky, C .
JOURNAL OF NON-EQUILIBRIUM THERMODYNAMICS, 1998, 23 (02) :166-175
[24]   New Insights into the Fractional Order Diffusion Equation Using Entropy and Kurtosis [J].
Ingo, Carson ;
Magin, Richard L. ;
Parrish, Todd B. .
ENTROPY, 2014, 16 (11) :5838-5852
[25]   On Random Walks and Entropy in Diffusion-Weighted Magnetic Resonance Imaging Studies of Neural Tissue [J].
Ingo, Carson ;
Magin, Richard L. ;
Colon-Perez, Luis ;
Triplett, William ;
Mareci, Thomas H. .
MAGNETIC RESONANCE IN MEDICINE, 2014, 71 (02) :617-627
[26]   Approximate solution of the fractional advection-dispersion equation [J].
Jiang, Wei ;
Lin, Yingzhen .
COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (03) :557-561
[27]  
Kilbas A., 2006, THEORY APPL FRACTION
[28]   Fractional diffusion, irreversibility and entropy [J].
Li, X ;
Essex, C ;
Davison, M ;
Hoffmann, KH ;
Schulzky, C .
JOURNAL OF NON-EQUILIBRIUM THERMODYNAMICS, 2003, 28 (03) :279-291
[29]   Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation [J].
Liu, F. ;
Zhuang, P. ;
Anh, V. ;
Turner, I. ;
Burrage, K. .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 191 (01) :12-20
[30]   Numerical methods and analysis for a class of fractional advection-dispersion models [J].
Liu, F. ;
Zhuang, P. ;
Burrage, K. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (10) :2990-3007