Supercritical biharmonic equations with power-type nonlinearity

被引:30
作者
Ferrero, Alberto [1 ]
Grunau, Hans-Christoph [2 ]
Karageorgis, Paschalis [3 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat, I-20125 Milan, Italy
[2] Otto VonGuericke Univ Magdegurg, Fak Math, D-39016 Magdeburg, Germany
[3] Univ Dublin Trinity Coll, Sch Math, Dublin 2, Ireland
关键词
supercritical biharmonic equation; power-type nonlinearity; singular solution; oscillatory behavior; boundedness; extremal solution; POSITIVE SOLUTIONS;
D O I
10.1007/s10231-008-0070-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study two different versions of a supercritical biharmonic equation with a power-type nonlinearity. First, we focus on the equation Delta(2)u = vertical bar u vertical bar(p-1)u over the whole space R-n, where n > 4 and p > (n + 4)/(n - 4). Assuming that p < p(c), where p(c) is a further critical exponent, we show that all regular radial solutions oscillate around an explicit singular radial solution. As it was already known, on the other hand, no such oscillations occur in the remaining case p >= p(c). We also study the Dirichlet problem for the equation Delta(2)u = lambda(1 + u)(p) over the unit ball in R-n, where lambda > 0 is an eigenvalue parameter, while n > 4 and p > (n + 4)/(n - 4) as before. When it comes to the extremal solution associated to this eigenvalue problem, we show that it is regular as long as p < p(c). Finally, we show that a singular solution exists for some appropriate lambda > 0.
引用
收藏
页码:171 / 185
页数:15
相关论文
共 21 条
[1]  
[Anonymous], 1997, Rev. Mat. Univ. Complut. Madrid
[2]  
[Anonymous], 1980, Commun. Partial Differ. Equ
[3]   A semilinear fourth order elliptic problem with exponential nonlinearity [J].
Arioli, G ;
Gazzola, F ;
Grunau, HC ;
Mitidieri, E .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 36 (04) :1226-1258
[4]  
Berchio E, 2005, ELECTRON J DIFFER EQ
[5]  
Brezis H., 1996, ADV DIFFERENTIAL EQU, V1, P73
[6]  
DALMASSO R, 1991, FUNKC EKVACIOJ-SER I, V34, P403
[7]   Stable solutions for the bilaplacian with exponential nonlinearity [J].
Davila, Juan ;
Dupaigne, Louis ;
Guerra, Ignacio ;
Montenegro, Marcelo .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 39 (02) :565-592
[8]   The Dirichlet problem for supercritical biharmonic equations with power-type nonlinearity [J].
Ferrero, Alberto ;
Grunau, Hans-Christoph .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 234 (02) :582-606
[9]   Optimal lower bound of the grow-up rate for a supercritical parabolic equation [J].
Fila, Marek ;
King, John R. ;
Winkler, Michael ;
Yanagida, Eiji .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 228 (01) :339-356
[10]   Radial entire solutions for supercritical biharmonic equations [J].
Gazzola, F ;
Grunau, HC .
MATHEMATISCHE ANNALEN, 2006, 334 (04) :905-936