Thickness and density evaluation for nanostructured thin films by glancing angle deposition

被引:31
作者
Buzea, C [1 ]
Kaminska, K [1 ]
Beydaghyan, G [1 ]
Brown, T [1 ]
Elliott, C [1 ]
Dean, C [1 ]
Robbie, K [1 ]
机构
[1] Queens Univ, Dept Phys, Kingston, ON K7L 3N6, Canada
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B | 2005年 / 23卷 / 06期
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1116/1.2131079
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Thickness evaluation is a particular challenge encountered in the fabrication of nanosculptured thin films fabricated by glancing angle deposition (GLAD). In this article, we deduce equations which allow for accurate in situ thickness monitoring of GLAD thin films deposited onto substrates tilted with respect to the direction of incoming vapor. Universal equations are derived for the general case of Gaussian vapor flux distribution, off-axis sensors, variable substrate tilt, and nonunity sticking coefficient. The mathematical description leads to an incidence angle dependence of thickness and density, allowing for quantitative prediction of porosity in samples with different morphologies and thickness calibrations. In addition, variation of sticking probability with the incidence angle creates a nonmonotonic variation of the film thickness and porosity with the substrate tilt. We discuss the implications of the substrate type, sensor type, and source geometry in a precise quantitative determination of the thickness of thin films fabricated on tilted substrates. Our equations can be particularized for the case of films fabricated at normal incidence. (c) 2005 American Vacuum Society.
引用
收藏
页码:2545 / 2552
页数:8
相关论文
共 17 条
[1]   Oblique evaporation and surface diffusion [J].
Abelmann, L ;
Lodder, C .
THIN SOLID FILMS, 1997, 305 (1-2) :1-21
[2]   Cu sputtering and deposition by off-normal, near-threshold Cu+ bombardment:: Molecular dynamics simulations [J].
Abrams, CF ;
Graves, DB .
JOURNAL OF APPLIED PHYSICS, 1999, 86 (04) :2263-2267
[3]   State of the art in thin film thickness and deposition rate monitoring sensors [J].
Buzea, C ;
Robbie, K .
REPORTS ON PROGRESS IN PHYSICS, 2005, 68 (02) :385-409
[4]   Molecular dynamics-based ion-surface interaction models for ionized physical vapor deposition feature scale simulations [J].
Coronell, DG ;
Hansen, DE ;
Voter, AF ;
Liu, CL ;
Liu, XY ;
Kress, JD .
APPLIED PHYSICS LETTERS, 1998, 73 (26) :3860-3862
[5]   Trapping and desorption of energetic Cu atoms on Cu(111) and (001) surfaces at grazing incidence [J].
Hanson, DE ;
Kress, JD ;
Voter, AF ;
Liu, XY .
PHYSICAL REVIEW B, 1999, 60 (16) :11723-11729
[6]   Simulating structure and optical response of vacuum evaporated porous rugate filters [J].
Kaminska, K ;
Suzuki, M ;
Kimura, K ;
Taga, Y ;
Robbie, K .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (06) :3055-3062
[7]   Vacuum evaporated porous silicon photonic interference filters [J].
Kaminska, K ;
Brown, T ;
Beydaghyan, G ;
Robbie, K .
APPLIED OPTICS, 2003, 42 (20) :4212-4219
[8]   Scaling during shadowing growth of isolated nanocolumns [J].
Karabacak, T ;
Singh, JP ;
Zhao, YP ;
Wang, GC ;
Lu, TM .
PHYSICAL REVIEW B, 2003, 68 (12)
[9]   Ion solid surface interactions in ionized copper physical vapor deposition [J].
Liu, XY ;
Daw, MS ;
Kress, JD ;
Hanson, DE ;
Arunachalam, V ;
Coronell, DG ;
Liu, CL ;
Voter, AF .
THIN SOLID FILMS, 2002, 422 (1-2) :141-149
[10]   Engineered sculptured nematic thin films [J].
Messier, R ;
Gehrke, T ;
Frankel, C ;
Venugopal, VC ;
Otano, W ;
Lakhtakia, A .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1997, 15 (04) :2148-2152