Dimension dependent hypercontractivity for Gaussian kernels

被引:15
作者
Bakry, Dominique [2 ]
Bolley, Francois [1 ]
Gentil, Ivan [3 ]
机构
[1] Univ Paris 09, CEREMADE, F-75116 Paris, France
[2] Univ Toulouse, Inst Math Toulouse, Univ Toulouse 3, F-31062 Toulouse, France
[3] Univ Lyon 1, Inst Camille Jordan, F-69622 Villeurbanne, France
关键词
Hypercontractive bound; Diffusion semigroup; Logarithmic Sobolev inequality; Curvature-dimension criterion; Transportation inequality; LOGARITHMIC SOBOLEV INEQUALITIES; TRANSPORTATION COST;
D O I
10.1007/s00440-011-0387-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We derive sharp, local and dimension dependent hypercontractive bounds on the Markov kernel of a large class of diffusion semigroups. Unlike the dimension free ones, they capture refined properties of Markov kernels, such as trace estimates. They imply classical bounds on the Ornstein-Uhlenbeck semigroup and a dimensional and refined (transportation) Talagrand inequality when applied to the Hamilton-Jacobi equation. Hypercontractive bounds on the Ornstein-Uhlenbeck semigroup driven by a non-diffusive L,vy semigroup are also investigated. Curvature-dimension criteria are the main tool in the analysis.
引用
收藏
页码:845 / 874
页数:30
相关论文
共 23 条
[1]   On logarithmic Sobolev inequalities for continuous time random walks on graphs [J].
Ané, C ;
Ledoux, M .
PROBABILITY THEORY AND RELATED FIELDS, 2000, 116 (04) :573-602
[2]  
Ane C., 2000, INEGALITES SOBOLEV L, V10
[3]  
Applebaum D., 2004, CAMBRIDGE STUDIES AD, V93
[4]  
Bakry D., 2010, JOURN EQ DER PART PO
[5]  
Bakry D., 2006, Probability measures on groups: recent directions and trends, P91
[6]  
Bakry D., 1985, SEM PROB 19, V1123, P177
[7]  
Bakry D., REV MAT IBE IN PRESS
[8]  
Bakry D, 2006, REV MAT IBEROAM, V22, P683
[9]   Hypercontractivity of Hamilton-Jacobi equations [J].
Bobkov, SG ;
Gentil, I ;
Ledoux, M .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (07) :669-696
[10]   Exponential integrability and transportation cost related to logarithmic sobolev inequalities [J].
Bobkov, SG ;
Götze, F .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 163 (01) :1-28