Comparison between a conventional treatment energy and 50 MV photons for the treatment of lung tumours

被引:12
作者
Blomquist, M [1 ]
Li, JS
Ma, CM
Zackrisson, B
Karlsson, M
机构
[1] Umea Univ, Dept Radiat Sci Radiat Phys, SE-90187 Umea, Sweden
[2] Stanford Univ, Sch Med, Dept Radiat Oncol, Stanford, CA 94305 USA
[3] Fox Chase Canc Ctr, Dept Radiat Oncol, Philadelphia, PA 19111 USA
[4] Umea Univ, Dept Radiat Sci Oncol, SE-90187 Umea, Sweden
关键词
D O I
10.1088/0031-9155/47/6/303
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Radiation therapy in the thoracic region is difficult due to the presence of many dose-limiting structures and the large density differences that affect the dose distribution. Conventional irradiation techniques use low-energy photon beams to avoid build-up effects superficially in the tumour and increased lateral scattering of the beams. For deep-seated tumours higher beam energies could have lung-sparing properties that would enable dose escalation. A comparison was made for a conventional low photon energy (6 MV) and 50 MV photons for the treatment of a lung tumour. A representative patient geometry was selected, consisting of a small tumour semi-enclosed in lung tissue. Treatment plans were designed using a commercial 3D-pencil beam treatment planning system. The treatment beams designed in the TPS were simulated with the Monte Carlo code EGS4/BEAM and the dose distribution in the phantom created from the patients CT-data was calculated using MCDOSE with identical beam geometry for both energies. The intrinsic difference between the two photon energies implies a sparing effect of lung that can be utilized for dose escalation. For a treatment with two beams the mean total dose to the tumour could be increased by 5.3% for 50 MV, corresponding to 3.2 Gy for a prescription dose of 60 Gy, with the same complication probability for the treated lung as for 6 MV. In conclusion, high-energy beams have qualities that can be taken advantage of for irradiation of lung tumours. Optimum solutions would probably require the use of both high- and low-energy beams.
引用
收藏
页码:889 / 897
页数:9
相关论文
共 22 条
[1]   The impact of electron transport on the accuracy of computed dose [J].
Arnfield, MR ;
Siantar, CH ;
Siebers, J ;
Garmon, P ;
Cox, L ;
Mohan, R .
MEDICAL PHYSICS, 2000, 27 (06) :1266-1274
[2]   Measured lung dose correction factors for 50 MV photons [J].
Blomquist, M ;
Karlsson, M .
PHYSICS IN MEDICINE AND BIOLOGY, 1998, 43 (11) :3225-3234
[3]   FITTING OF NORMAL TISSUE TOLERANCE DATA TO AN ANALYTIC-FUNCTION [J].
BURMAN, C ;
KUTCHER, GJ ;
EMAMI, B ;
GOITEIN, M .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1991, 21 (01) :123-135
[4]   PITFALLS IN THE USE OF HIGH-ENERGY X-RAYS TO TREAT TUMORS IN THE LUNG [J].
EKSTRAND, KE ;
BARNES, WH .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1990, 18 (01) :249-252
[5]   TOLERANCE OF NORMAL TISSUE TO THERAPEUTIC IRRADIATION [J].
EMAMI, B ;
LYMAN, J ;
BROWN, A ;
COIA, L ;
GOITEIN, M ;
MUNZENRIDER, JE ;
SHANK, B ;
SOLIN, LJ ;
WESSON, M .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1991, 21 (01) :109-122
[6]   Impact of simple tissue inhomogeneity correction algorithms on conformal radiotherapy of lung tumours [J].
Engelsman, M ;
Damen, EMF ;
Koken, PW ;
van 't Veld, AA ;
van Ingen, KM ;
Mijnheer, BJ .
RADIOTHERAPY AND ONCOLOGY, 2001, 60 (03) :299-309
[7]   THE INFLUENCE OF AIR CAVITIES ON INTERFACE DOSES FOR PHOTON BEAMS [J].
KLEIN, EE ;
CHIN, LM ;
RICE, RK ;
MIJNHEER, BJ .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1993, 27 (02) :419-427
[8]   LIMITATIONS OF A PENCIL BEAM APPROACH TO PHOTON DOSE CALCULATIONS IN LUNG-TISSUE [J].
KNOOS, T ;
AHNESJO, A ;
NILSSON, P ;
WEBER, L .
PHYSICS IN MEDICINE AND BIOLOGY, 1995, 40 (09) :1411-1420
[9]   CHANGES IN THE DOSE-PROFILE OF A 10-MV X-RAY-BEAM WITHIN AND BEYOND LOW-DENSITY MATERIAL [J].
KORNELSEN, RO ;
YOUNG, MEJ .
MEDICAL PHYSICS, 1982, 9 (01) :114-116
[10]   CALCULATION OF COMPLICATION PROBABILITY FACTORS FOR NON-UNIFORM NORMAL TISSUE IRRADIATION - THE EFFECTIVE VOLUME METHOD [J].
KUTCHER, GJ ;
BURMAN, C .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1989, 16 (06) :1623-1630