共 50 条
On the orders of zeros of irreducible characters
被引:43
|作者:
Dolfi, Silvio
[1
]
Pacifici, Emanuele
[2
]
Sanus, Lucia
[3
]
Spiga, Pablo
[4
]
机构:
[1] Univ Florence, Dipartimento Matemat U Dini, I-50134 Florence, Italy
[2] Univ Milan, Dipartimento Matemat F Enriques, I-20133 Milan, Italy
[3] Univ Valencia, Dept Algebra, Fac Matemat, E-46100 Valencia, Spain
[4] Univ Padua, Dipartimento Matemat Pura & Applicata, I-35121 Padua, Italy
关键词:
Finite groups;
Characters;
Zeros of characters;
FINITE SIMPLE-GROUPS;
DEFECT ZERO;
P-BLOCKS;
LIE TYPE;
D O I:
10.1016/j.jalgebra.2008.10.004
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let G be a finite group and p a prime number. We say that an element g in G is a vanishing element of G if there exists an irreducible character X of G such that X(g) = 0. The main result of this paper shows that, if G does not have any vanishing element of p-power order, then G has a normal Sylow p-subgroup. Also, we prove that this result is a generalization of some classical theorems in Character Theory of finite groups. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:345 / 352
页数:8
相关论文