Atomically Abrupt Silicon-Germanium Axial Heterostructure Nanowires Synthesized in a Solvent Vapor Growth System

被引:59
作者
Geaney, Hugh [1 ,2 ]
Mullane, Emma [1 ,2 ]
Ramasse, Quentin M. [3 ]
Ryan, Kevin M. [1 ,2 ]
机构
[1] Univ Limerick, Mat & Surface Sci Inst, Limerick, Ireland
[2] Univ Limerick, Dept Chem & Environm Sci, Limerick, Ireland
[3] SuperSTEM Lab, Daresbury WA4 4AD, Cheshire, England
基金
爱尔兰科学基金会;
关键词
Heterostructure nanowires; silicon; germanium; interfacial abruptness; solvent vapor growth; aberration corrected STEM analysis; SEMICONDUCTOR NANOWIRES; DEFECT FORMATION; SI NANOWIRES; SOLAR-CELLS; HIGH-YIELD; CATALYST; HETEROJUNCTIONS; ELECTRONICS; MORPHOLOGY; ATOMS;
D O I
10.1021/nl400146u
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The growth of Si/Ge axial heterostructure nanowires in high yield using a versatile wet chemical approach is reported. Heterostructure growth is achieved using the vapor zone of a high boiling point solvent as a reaction medium with an evaporated tin layer as the catalyst. The low solubility of Si and Ge within the Sn catalyst allows the formation of extremely abrupt heterojunctions of the order of just 1-2 atomic planes between the Si and Ge nanowire segments. The compositional abruptness was confirmed using aberration corrected scanning transmission electron microscopy and atomic level electron energy loss spectroscopy. Additional analysis focused on the role of crystallographic defects in determining interfacial abruptness and the preferential incorporation of metal catalyst atoms near twin defects in the nanowires.
引用
收藏
页码:1675 / 1680
页数:6
相关论文
共 57 条
[11]   Defect Formation in Ga-Catalyzed Silicon Nanowires [J].
Conesa-Boj, Sonia ;
Zardo, Ilaria ;
Estrade, Sonia ;
Wei, Li ;
Alet, Pierre Jean ;
Roca i Cabarrocas, Pere ;
Morante, Joan R. ;
Peiro, Francesca ;
Fontcuberta i Morral, Anna ;
Arbiol, Jordi .
CRYSTAL GROWTH & DESIGN, 2010, 10 (04) :1534-1543
[12]   Functional nanoscale electronic devices assembled using silicon nanowire building blocks [J].
Cui, Y ;
Lieber, CM .
SCIENCE, 2001, 291 (5505) :851-853
[13]   High performance silicon nanowire field effect transistors [J].
Cui, Y ;
Zhong, ZH ;
Wang, DL ;
Wang, WU ;
Lieber, CM .
NANO LETTERS, 2003, 3 (02) :149-152
[14]   Growth, Defect Formation, and Morphology Control of Germanium-Silicon Semiconductor Nanowire Heterostructures [J].
Dayeh, Shadi A. ;
Wang, Jian ;
Li, Nan ;
Huang, Jian Yu ;
Gin, Aaron V. ;
Picraux, S. Thomas .
NANO LETTERS, 2011, 11 (10) :4200-4206
[15]   Axial bandgap engineering in germanium-silicon heterostructured nanowires [J].
Dayeh, Shadi A. ;
Dickerson, Robert M. ;
Picraux, S. Thomas .
APPLIED PHYSICS LETTERS, 2011, 99 (11)
[16]   The morphology of axial and branched nanowire heterostructures [J].
Dick, Kimberly A. ;
Kodambaka, Suneel ;
Reuter, Mark C. ;
Deppert, Knut ;
Samuelson, Lars ;
Seifert, Werner ;
Wallenberg, L. Reine ;
Ross, Frances M. .
NANO LETTERS, 2007, 7 (06) :1817-1822
[17]   Light Trapping in Silicon Nanowire Solar Cells [J].
Garnett, Erik ;
Yang, Peidong .
NANO LETTERS, 2010, 10 (03) :1082-1087
[18]   Silicon nanowire radial p-n junction solar cells [J].
Garnett, Erik C. ;
Yang, Peidong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (29) :9224-+
[19]   Growth of Crystalline Copper Silicide Nanowires in High Yield within a High Boiling Point Solvent System [J].
Geaney, Hugh ;
Dickinson, Calum ;
O'Dwyer, Colm ;
Mullane, Emma ;
Singh, Ajay ;
Ryan, Kevin M. .
CHEMISTRY OF MATERIALS, 2012, 24 (22) :4319-4325
[20]   High Density Growth of Indium seeded Silicon Nanowires in the Vapor phase of a High Boiling Point Solvent [J].
Geaney, Hugh ;
Kennedy, Tadhg ;
Dickinson, Calum ;
Mullane, Emma ;
Singh, Ajay ;
Laffir, Fathima ;
Ryan, Kevin M. .
CHEMISTRY OF MATERIALS, 2012, 24 (11) :2204-2210