Composite organic radical-inorganic hybrid cathode for lithium-ion batteries

被引:12
作者
Huang, Qian [1 ]
Cosimbescu, Lelia [1 ]
Koech, Phillip [1 ]
Choi, Daiwon [1 ]
Lemmon, John P. [1 ]
机构
[1] Pacific NW Natl Lab, Richland, WA 99354 USA
关键词
Hybrid cathode; PTMA/LiFePO4; composite; High pulse power; Organic radical; Lithium-ion battery; RECHARGEABLE BATTERIES; BEHAVIOR; ELECTRODES; POLYMERS;
D O I
10.1016/j.jpowsour.2013.01.076
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A new organic radical-inorganic hybrid cathode comprised of poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl methacrylate) (PTMA)/LiFePO4 composite system was developed and reported for the first time. The hybrid electrodes' voltammetry contains three pairs of reversible redox peaks indicating the combination of electrochemical characteristics between LiFePO4 and PTMA electrodes and shows a decrease in voltage gap between oxidation and reduction that corresponds to an improvement in the rate and reversibility of the redox couples. Results from electrochemical impedance spectroscopy show lower charge-transfer resistance of cycled hybrid cathodes suggesting an enhanced electrode/electrolyte interface formed in hybrid systems which leads to faster migration of Li ions through the interface and longer cycle life capability when compared with pure LiFePO4 or PTMA cathode system. Optimizing the hybrid cathode's ratio of PTMA/LiFePO4 yields a significant improvement in high pulse power performance (30 mAh cm(-3)) over the pure PTMA (16 mAh cm(-3)) or LiFePO4 (3.0 mAh cm(-3)) cathode. Further characterization of the hybrid electrodes using SEM showed a more compact surface morphology after high rate pulse experiments. The demonstrated properties of hybrid cathodes are promising for transportation and other high pulse power applications that require long cycle life and low cost. (C) 2013 Published by Elsevier B.V.
引用
收藏
页码:69 / 73
页数:5
相关论文
共 25 条
[1]  
[Anonymous], 2012, USABC HIGH POWER LOW
[2]  
[Anonymous], 2006, ENERGY STORAGE SYSTE
[3]  
[Anonymous], 2006, C EV BATTERY TEST PR
[4]  
BREUER E, 1989, NITROENES NITRONATES
[5]   Thermal stability and phase transformation of electrochemically charged/discharged LiMnPO4 cathode for Li-ion batteries [J].
Choi, Daiwon ;
Xiao, Jie ;
Choi, Young Joon ;
Hardy, John S. ;
Vijayakumar, M. ;
Bhuvaneswari, M. S. ;
Liu, Jun ;
Xu, Wu ;
Wang, Wei ;
Yang, Zhenguo ;
Graff, Gordon L. ;
Zhang, Ji-Guang .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (11) :4560-4566
[6]   Superior radical polymer cathode material with a two-electron process redox reaction promoted by graphene [J].
Guo, Wei ;
Yin, Ya-Xia ;
Xin, Sen ;
Guo, Yu-Guo ;
Wan, Li-Jun .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (01) :5221-5225
[7]   Thermal study on single electrodes in lithium-ion battery [J].
Huang, Qian ;
Yan, Manming ;
Jiang, Zhiyu .
JOURNAL OF POWER SOURCES, 2006, 156 (02) :541-546
[8]   Effect of radical polymer cathode thickness on the electrochemical performance of organic radical battery [J].
Kim, Jae-Kwang ;
Cheruvally, Gouri ;
Choi, Jae-Won ;
Ahn, Jou-Hyeon ;
Lee, Seo Hwan ;
Choi, Doo Seong ;
Song, Choong Eul .
SOLID STATE IONICS, 2007, 178 (27-28) :1546-1551
[9]   Organic Electrode Materials for Rechargeable Lithium Batteries [J].
Liang, Yanliang ;
Tao, Zhanliang ;
Chen, Jun .
ADVANCED ENERGY MATERIALS, 2012, 2 (07) :742-769
[10]   Electrochemical behavior of LiFePO4/C cathode material for rechargeable lithium batteries [J].
Liao, XZ ;
Ma, ZF ;
He, YS ;
Zhang, XM ;
Wang, L ;
Jiang, Y .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (10) :A1969-A1973