L-functions as distributions

被引:0
|
作者
Booker, Andrew R. [1 ]
机构
[1] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
SELBERG CLASS; DIRICHLET SERIES; ZEROS;
D O I
10.1007/s00208-015-1178-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define an axiomatic class of -functions extending the Selberg class. We show in particular that one can recast the traditional conditions of an Euler product, analytic continuation and functional equation in terms of distributional identities akin to Weil's explicit formula. The generality of our approach enables some new applications; for instance, we show that the -function of any cuspidal automorphic representation of has infinitely many zeros of odd order.
引用
收藏
页码:423 / 454
页数:32
相关论文
共 50 条
  • [1] ON THE τ-LI COEFFICIENTS FOR AUTOMORPHIC L-FUNCTIONS
    Mazhouda, Kamel
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2017, 47 (06) : 1987 - 2011
  • [2] On common zeros of L-functions
    Bao Qin Li
    Mathematische Zeitschrift, 2012, 272 : 1097 - 1102
  • [3] On common zeros of L-functions
    Li, Bao Qin
    MATHEMATISCHE ZEITSCHRIFT, 2012, 272 (3-4) : 1097 - 1102
  • [4] Large values of Dirichlet L-functions at zeros of a class of L-functions
    Li, Junxian
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2021, 73 (06): : 1459 - 1505
  • [5] On the argument of L-functions
    Carneiro, Emanuel
    Finder, Renan
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2015, 46 (04): : 601 - 620
  • [6] Selberg's orthonormality conjecture and joint universality of L-functions
    Lee, Yoonbok
    Nakamura, Takashi
    Pankowski, Lukasz
    MATHEMATISCHE ZEITSCHRIFT, 2017, 286 (1-2) : 1 - 18
  • [7] A NOTE ON SIMPLE a-POINTS OF L-FUNCTIONS
    Gonek, S. M.
    Lester, S. J.
    Milinovich, M. B.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (12) : 4097 - 4103
  • [8] Some remarks on the convergence of the Dirichlet series of L-functions and related questions
    Kaczorowski, Jerzy
    Perelli, Alberto
    MATHEMATISCHE ZEITSCHRIFT, 2017, 285 (3-4) : 1345 - 1355
  • [9] Monotonicity properties of L-functions
    Chaubey, Sneha
    Koutsaki, K. Paolina
    Zaharescu, Alexandru
    MATHEMATISCHE NACHRICHTEN, 2019, 292 (06) : 1238 - 1245
  • [10] Vanishing of Witten L-functions
    Min, Jeongwon
    JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 2017, 32 (02) : 185 - 200