A posteriori stopping rule for regularized fixed point iterations

被引:8
作者
Bakushinsky, A
Smirnova, A [1 ]
机构
[1] Georgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USA
[2] RAS, Inst Syst Anal, Moscow 117312, Russia
基金
美国国家科学基金会;
关键词
discrepancy principle; ill-posed problem; regularization;
D O I
10.1016/j.na.2005.06.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Iteratively regularized fixed-point iteration scheme x(n+1) = x(n) - alpha(n) {F(x(n)) - f(delta) + epsilon(n) (x(n) - x(0))} combined with the generalized discrepancy principle parallel to F(x(N)) - f(delta)parallel to(2) <= tau(delta) < parallel to F(x(n)) - f(delta)parallel to(2), 0 <= n < N, tau > 1, for solving nonlinear operator equation F(x) = f in a Hilbert space is studied in the paper. It is shown that if F is monotone and Lipschitz-continuous the sequence {N(delta)} is admissible, i.e. (delta -> 0)lim parallel to x(N(delta)) - x*parallel to = 0, where x* is a solution to F(x) = f. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1255 / 1261
页数:7
相关论文
共 8 条
[1]   On application of generalized discrepancy principle to iterative methods for nonlinear ill-posed problems [J].
Bakushinsky, A ;
Smirnova, A .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2005, 26 (01) :35-48
[2]  
BAKUSHINSKY AB, 1993, DOKL AKAD NAUK+, V330, P282
[3]   On convergence rates for the iteratively regularized Gauss-Newton method [J].
Blaschke, B ;
Neubauer, A ;
Scherzer, O .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1997, 17 (03) :421-436
[4]  
BUKUSHINSKY AB, 1994, ILL POSED PROBLEMS T
[5]  
BUKUSHINSKY AB, 1974, DOKL AKAD NAUK SSSR, V219, P1038
[6]  
Deimling K., 2010, NONLINEAR FUNCTIONAL, DOI DOI 10.1007/978-3-662-00547-7
[7]  
Morozov V., 1968, USSR Comput Math Math Phys, V8, P63, DOI [10.1016/0041-5553(68)90034-7, DOI 10.1016/0041]
[8]  
Morozov VA., 1967, SOV MATH DOKL, V8, P1000