Necessary Optimality Conditions and a New Approach to Multiobjective Bilevel Optimization Problems

被引:20
作者
Gadhi, N. [2 ]
Dempe, S. [1 ]
机构
[1] Tech Univ Bergakad Freiberg, Dept Math & Comp Sci, D-09596 Freiberg, Germany
[2] Sidi Mohamed Ben Abdellah Univ, Dept Math, Sidi Brahim, Fes, Morocco
关键词
Multiobjective optimization; Local weak efficient solution; Optimality conditions; Optimal value function; Bilevel programming;
D O I
10.1007/s10957-012-0046-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Multiobjective optimization problems typically have conflicting objectives, and a gain in one objective very often is an expense in another. Using the concept of Pareto optimality, we investigate a multiobjective bilevel optimization problem (say, P). Our approach consists of proving that P is locally equivalent to a single level optimization problem, where the nonsmooth Mangasarian-Fromovitz constraint qualification may hold at any feasible solution. With the help of a special scalarization function introduced in optimization by Hiriart-Urruty, we convert our single level optimization problem into another problem and give necessary optimality conditions for the initial multiobjective bilevel optimization problem P.
引用
收藏
页码:100 / 114
页数:15
相关论文
共 21 条
[1]  
Amahroq T, 1997, OPTIMIZATION, V41, P159, DOI DOI 10.1080/02331939708844332
[2]  
[Anonymous], 1998, Practical bi-level optimization
[3]  
[Anonymous], 1997, Nondifferentiable and Two-Level Mathematical Programming, DOI DOI 10.1007/978-1-4615-6305-1
[4]   Necessary optimality conditions for bilevel optimization problems using convexificators [J].
Babahadda, H ;
Gadhi, N .
JOURNAL OF GLOBAL OPTIMIZATION, 2006, 34 (04) :535-549
[5]   Necessary conditions in multiobjective optimization with equilibrium constraints [J].
Bao, T. Q. ;
Gupta, P. ;
Mordukhovich, B. S. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2007, 135 (02) :179-203
[6]   OPTIMALITY CONDITIONS FOR THE BILEVEL PROGRAMMING PROBLEM [J].
BARD, JF .
NAVAL RESEARCH LOGISTICS, 1984, 31 (01) :13-26
[7]  
CILIGOTTRAVAIN M, 1994, NUMER FUNCT ANAL OPT, V15, P689
[8]  
Clarke F.H, 1983, OPTIMIZATION NONSMOO
[9]   Second order optimality conditions for bilevel set optimization problems [J].
Dempe, S. ;
Gadhi, N. .
JOURNAL OF GLOBAL OPTIMIZATION, 2010, 47 (02) :233-245
[10]   Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints [J].
Dempe, S .
OPTIMIZATION, 2003, 52 (03) :333-359