Minimal projections with respect to various norms

被引:8
作者
Aksoy, Asuman Gueven [1 ]
Lewicki, Grzegorz [2 ]
机构
[1] Claremont Mckenna Coll, Dept Math, Claremont, CA 91711 USA
[2] Jagiellonian Univ, Dept Math & Comp Sci, PL-30348 Krakow, Poland
关键词
numerical radius; minimal projection; normed operator ideal; TENSOR-PRODUCT-SPACES; NUMERICAL INDEX; UNIQUE MINIMALITY; SYMMETRIC-SPACES; BANACH-SPACES; EXTENSIONS; CONSTANTS; APPROXIMATION; SUBSPACES; OPERATOR;
D O I
10.4064/sm210-1-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A theorem of Rudin permits us to determine minimal projections not only with respect to the operator norm but with respect to various norms on operator ideals and with respect to numerical radius. We prove a general result about N-minimal projections where N is a convex and lower semicontinuous (with respect to the strong operator topology) function and give specific examples for the cases of norms or seminorms of p-summing, p-integral and p-nuclear operator ideals.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 44 条
[1]   Minimal numerical-radius extensions of operators [J].
Aksoy, A. G. ;
Chalmers, B. L. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (04) :1039-1050
[2]   Best Approximation in Numerical Radius [J].
Aksoy, Asuman Gueven ;
Lewicki, Grzegorz .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2011, 32 (06) :593-609
[3]  
ALEKSIEJCZYK M., 1997, Demonstratio Mathematica, V30, P129
[4]  
[Anonymous], 1969, B SOC MATH BELG
[5]  
BERMAN DL, 1958, DOKL AKAD NAUK SSSR+, V120, P1175
[6]  
Bonsall F.F., 1971, London Mathematical Society Lecture Note Series, V2
[7]  
BONSALL FF, 1971, LONDON MATH SOC LECT, V10
[8]   THE DETERMINATION OF MINIMAL PROJECTIONS AND EXTENSIONS IN L1 [J].
CHALMERS, BL ;
METCALF, FT .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 329 (01) :289-305
[9]   Symmetric spaces with maximal projection constants [J].
Chalmers, BL ;
Lewicki, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 200 (01) :1-22
[10]  
Chalmers BL, 1999, STUD MATH, V134, P119