How to make the quantum adiabatic algorithm fail

被引:60
作者
Farhi, Edward [1 ]
Goldstone, Jeffrey [1 ]
Gutmann, Sam [2 ]
Nagaj, Daniel [1 ]
机构
[1] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
[2] Northeastern Univ, Dept Math, Boston, MA 02115 USA
基金
美国国家科学基金会;
关键词
adiabatic; quantum; bounds;
D O I
10.1142/S021974990800358X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The quantum adiabatic algorithm is a Hamiltonian based quantum algorithm designed to find the minimum of a classical cost function whose domain has size N. We show that poor choices for the Hamiltonian can guarantee that the algorithm will not find the minimum if the run time grows more slowly than root N. These poor choices are nonlocal and wash out any structure in the cost function to be minimized, and the best that can be hoped for is Grover speedup. These failures tell us what not to do when designing quantum adiabatic algorithms.
引用
收藏
页码:503 / 516
页数:14
相关论文
共 6 条
[1]   Strengths and weaknesses of quantum computing [J].
Bennett, CH ;
Bernstein, E ;
Brassard, G ;
Vazirani, U .
SIAM JOURNAL ON COMPUTING, 1997, 26 (05) :1510-1523
[2]   Analog analogue of a digital quantum computation [J].
Farhi, E ;
Gutmann, S .
PHYSICAL REVIEW A, 1998, 57 (04) :2403-2406
[3]  
Goldstone J, 2000, QUANTUM PHYS
[4]  
IOANNOU L, 2007, QUANTPH0702241
[5]  
WEI Z, 2006, QUANTPH0604077
[6]   Exponential complexity of an adiabatic algorithm for an NP-complete problem [J].
Znidaric, M ;
Horvat, M .
PHYSICAL REVIEW A, 2006, 73 (02)