Microclimate response of soil to plateau pika's disturbance in the northeast Qinghai-Tibet Plateau

被引:18
|
作者
Ma, Y. J. [1 ,2 ,3 ]
Wu, Y. N. [2 ]
Liu, W. L. [2 ]
Li, X. Y. [1 ,2 ]
Lin, H. S. [3 ,4 ,5 ]
机构
[1] Beijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol, Xinjiekouwai St 19, Beijing 100875, Peoples R China
[2] Beijing Normal Univ, Sch Nat Resources, Xinjiekouwai St 19, Beijing 100875, Peoples R China
[3] Penn State Univ, Dept Ecosyst Sci & Management, University Pk, PA 16802 USA
[4] Chinese Acad Sci, Inst Earth Environm, State Key Lab Loess & Quaternary Geol, Xian 710061, Shaanxi, Peoples R China
[5] Xian AMS Ctr, Shaanxi Key Lab Accelerator Mass Spectrometry Tec, Yanxiang Rd 97, Xian 710061, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
OCHOTONA-CURZONIAE; LAND-USE; CHINA; RUNOFF; BIODIVERSITY; DYNAMICS; COVER; INFILTRATION; TEMPERATURE; EVAPORATION;
D O I
10.1111/ejss.12540
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
The plateau pika (Ochotona curzoniae) is one of the main native soil faunas on the Qinghai-Tibet Plateau and plays a key role in the terrestrial ecosystem there. To understand how and why the soil microclimate changes after the plateau pika's disturbance, this study measured soil, vegetation, hydrologic and thermal properties and investigated soil moisture and soil temperature dynamics from 2014 to 2015 at the plot scale of four types of land surface: original grassland, new mound, old mound and bald patch. Our results showed that the average coefficients of surface runoff of original grassland, new mound, old mound and bald patch were 0.6, 3.0, 4.3 and 10.0%, respectively (P<0.05). Evapotranspiration was largest for original grassland, especially under wet conditions, and was similar among the other three types of land surface during the growing season (P<0.01). During varying precipitation events, the soil moisture content of new mound increased first, followed by old mound, original grassland and bald patch. Meanwhile, the increasing magnitude of soil moisture content had the same order. At the seasonal timescale, soil moisture content at 5-cm depth was largest for old mound and smallest for bald patch (P<0.01). The mean daily soil temperature at 5-cm depth of new mound was approximately 0.8 degrees C higher than that of old mound (P<0.01) because of the smaller land surface reflectance of the former. The daily range of soil temperature at 5-cm depth of original grassland and bald patch was about 2.7 and 4.7 degrees C higher than the average value of new and old mounds, respectively, because of the larger soil thermal conductivity of the former two. A conceptual framework is suggested in this study to synthesize the evolution of soil microclimate under disturbance by the plateau pika. Overall, results indicated that new and old mounds accelerate soil hydrologic processes and have a better soil temperature buffer.
引用
收藏
页码:232 / 244
页数:13
相关论文
共 50 条
  • [31] Response of Soil Carbon and Nitrogen Storage to Nitrogen Addition in Alpine Meadow of Qinghai-Tibet Plateau
    Xiang, Xuemei
    De, Kejia
    Lin, Weishan
    Feng, Tingxu
    Li, Fei
    Wei, Xijie
    Wang, Wei
    POLISH JOURNAL OF ENVIRONMENTAL STUDIES, 2025, 34 (01): : 359 - 368
  • [32] Changing climate and the permafrost environment on the Qinghai-Tibet (Xizang) plateau
    Zhao, Lin
    Zou, Defu
    Hu, Guojie
    Du, Erji
    Pang, Qiangqiang
    Xiao, Yao
    Li, Ren
    Sheng, Yu
    Wu, Xiaodong
    Sun, Zhe
    Wang, Lingxiao
    Wang, Chong
    Ma, Lu
    Zhou, Huayun
    Liu, Shibo
    PERMAFROST AND PERIGLACIAL PROCESSES, 2020, 31 (03) : 396 - 405
  • [33] Evaluating the Snow Cover Service Value on the Qinghai-Tibet Plateau
    Gao, Xianglong
    Feng, Qi
    Liu, Wen
    Deng, Xiaohong
    Zhu, Meng
    Zhang, Baiting
    Xue, Jian
    REMOTE SENSING, 2024, 16 (14)
  • [34] Plant community assembly of alpine meadow at different altitudes in Northeast Qinghai-Tibet Plateau
    Liu, Minxia
    Xu, Lu
    Mu, Ruolan
    Zhang, Guojuan
    Yu, Ruixin
    Li, Liang
    ECOSPHERE, 2023, 14 (01):
  • [35] VARIATIONAL FEATURES OF PRECIPITATION DELTA-O-18 IN NORTHEAST QINGHAI-TIBET PLATEAU
    ZHANG, XP
    SHI, YF
    YAO, TD
    SCIENCE IN CHINA SERIES B-CHEMISTRY LIFE SCIENCES & EARTH SCIENCES, 1995, 38 (07): : 854 - 864
  • [36] Spatiotemporal Patterns and Regional Differences in Soil Thermal Conductivity on the Qinghai-Tibet Plateau
    Liu, Wenhao
    Li, Ren
    Wu, Tonghua
    Shi, Xiaoqian
    Zhao, Lin
    Wu, Xiaodong
    Hu, Guojie
    Yao, Jimin
    Wang, Dong
    Xiao, Yao
    Ma, Junjie
    Jiao, Yongliang
    Wang, Shenning
    Zou, Defu
    Zhu, Xiaofan
    Chen, Jie
    Shi, Jianzong
    Qiao, Yongping
    REMOTE SENSING, 2023, 15 (04)
  • [37] Greening of the Qinghai-Tibet Plateau and Its Response to Climate Variations along Elevation Gradients
    Wang, Zhaoqi
    Cui, Guolong
    Liu, Xiang
    Zheng, Kai
    Lu, Zhiyuan
    Li, Honglin
    Wang, Gaini
    An, Zhifang
    REMOTE SENSING, 2021, 13 (18)
  • [38] Effects of grassland degradation on ecological stoichiometry of soil ecosystems on the Qinghai-Tibet Plateau
    Wang, Ying
    Ren, Ze
    Ma, Panpan
    Wang, Zhaomin
    Niu, Decao
    Fu, Hua
    Elser, James J.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 722
  • [39] Identifying ecological compensation areas for ecosystem services degradation on the Qinghai-Tibet Plateau
    Liu, Hua
    Liu, Shiliang
    Wang, Fangfang
    Liu, Yixuan
    Liu, Yanxu
    Sun, Jian
    Mcconkey, Kim R.
    Tran, Lam-Son Phan
    Dong, Yuhong
    Yu, Lu
    Wang, Qingbo
    JOURNAL OF CLEANER PRODUCTION, 2023, 423
  • [40] Sleep disturbance and quality of life among university freshmen in Qinghai-Tibet Plateau of China
    Zhang, Tiantian
    Lu, Li
    Ren, Yan-Ming
    Liu, Yu-Ying
    Hynek, Kamila Angelika
    Gao, Jie
    Chen, Hong-Ru
    Shen, Hong-Yi
    Gai, Xiang-Yun
    Dang, Zhan-Cui
    Liu, Shou
    FRONTIERS IN PSYCHIATRY, 2022, 13