KOHN-ROSSI COHOMOLOGY AND NONEXISTENCE OF CR MORPHISMS BETWEEN COMPACT STRONGLY PSEUDOCONVEX CR MANIFOLDS

被引:2
作者
Yau, Stephen S. -T. [1 ]
Zuo, Huaiqing [2 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
关键词
CLASSIFICATION;
D O I
10.4310/jdg/1552442610
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
One of the fundamental questions in CR geometry is: Given two strongly pseudoconvex CR manifolds X-1 and X-2 of dimension 2n-1, is there a non-constant CR morphism between them? In this paper, we use Kohn-Rossi cohomology to show the non-existence of non-constant CR morphism between such two CR manifolds. Specifically, if dim H-KR(p,q) (X-1) < dim H-KR(p,q) (X-2) for any (p, q) with 1 <= q <= n - 2, then there is no non-constant CR morphism from X-1 to X-2.
引用
收藏
页码:567 / 580
页数:14
相关论文
共 20 条
[1]  
Andreotti A., 1962, Bull. Soc. Math. Fr., V90, P193
[2]  
Boutetde Monvel L., 1975, SEMINAIRE GOULAOUIC, P14
[3]  
Folland G. B., 1972, ANN MATH STUD, V75
[4]   EMBEDDING STRICTLY PSEUDOCONVEX DOMAINS IN CONVEX DOMAINS [J].
FORNAESS, JE .
AMERICAN JOURNAL OF MATHEMATICS, 1976, 98 (02) :529-569
[5]   BOUNDARIES OF COMPLEX ANALYTIC VARIETIES .1. [J].
HARVEY, FR ;
LAWSON, HB .
ANNALS OF MATHEMATICS, 1975, 102 (02) :223-290
[6]  
Harvey R., 2000, ARXIVMATH0002195V1MA
[7]  
Hormander L., 1965, ACTA MATH, V113, P89, DOI 10.1007/BF02391775
[8]   ON EXTENSION OF HOLOMORPHIC FUNCTIONS FROM BOUNDARY OF A COMPLEX MANIFOLD [J].
KOHN, JJ ;
ROSSI, H .
ANNALS OF MATHEMATICS, 1965, 81 (03) :451-&
[9]   RATIONAL SINGUARITIES [J].
LAUFER, HB .
AMERICAN JOURNAL OF MATHEMATICS, 1972, 94 (02) :597-&
[10]  
LAWSON HB, 1987, ANN SCI ECOLE NORM S, V20, P557