Efficient Parameter Identification for Stochastic Biochemical Networks Using a Reduced-order Realization

被引:0
|
作者
Hori, Yutaka [1 ]
Khammash, Mustafa H. [2 ]
Hara, Shinji [1 ]
机构
[1] Univ Tokyo, Dept Informat Phys & Comp, Tokyo 1138656, Japan
[2] Swiss Fed Inst Technol, Dept Biosyst Sci & Engn, Basel, Switzerland
来源
2013 EUROPEAN CONTROL CONFERENCE (ECC) | 2013年
基金
美国国家科学基金会; 日本学术振兴会;
关键词
INFERENCE; SWITCH;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a parameter identification method for stochastic biochemical reaction networks using flow cytometry data. A distinctive feature of the proposed method is that it is computationally efficient compared to existing works, thus it is applicable to complex biochemical networks. To this end, we first show that it is possible to construct a significantly small-order realization of the stochastic biochemical system using flow cytometry measurements. Then, the small-order realization is utilized for the development of the efficient identification method. Finally, the proposed method is demonstrated with an existing biological example.
引用
收藏
页码:4154 / 4159
页数:6
相关论文
共 50 条
  • [1] An efficient reduced-order method for stochastic eigenvalue analysis
    Zheng, Zhibao
    Beer, Michael
    Nackenhorst, Udo
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2022, 123 (23) : 5884 - 5906
  • [2] Reduced-order Modeling of Parameter Variations for Parameter Identification in Rubber Curing
    Frank, Tobias
    Wielitzka, Mark
    Dagen, Matthias
    Ortmaier, Tobias
    ICINCO: PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, 2020, : 659 - 666
  • [3] A realization of reduced-order detection filters
    Kim, Yongmin
    Park, Jaehong
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2008, 6 (01) : 142 - 148
  • [4] A realization of reduced-order detection filters
    NanoTronix Co., Ltd., Younghan Bldg., 742-22, Banpo-dong, Seocho-gu, Seoul 137-810, Korea, Republic of
    不详
    Int. J. Control Autom. Syst., 2008, 1 (142-148):
  • [5] Reduced-order modeling for cardiac electrophysiology. Application to parameter identification
    Boulakia, M.
    Schenone, E.
    Gerbeau, J-F.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2012, 28 (6-7) : 727 - 744
  • [6] Reduced-order models for control of fluids using the eigensystem realization algorithm
    Zhanhua Ma
    Sunil Ahuja
    Clarence W. Rowley
    Theoretical and Computational Fluid Dynamics, 2011, 25 : 233 - 247
  • [7] Reduced-order models for control of fluids using the eigensystem realization algorithm
    Ma, Zhanhua
    Ahuja, Sunil
    Rowley, Clarence W.
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2011, 25 (1-4) : 233 - 247
  • [8] Efficient Flutter Prediction Using Reduced-Order Modeling
    Lowe, Brandon M.
    Zingg, David W.
    AIAA JOURNAL, 2021, 59 (07) : 2670 - 2683
  • [9] Using reduced-order models to study dynamic legged locomotion: Parameter identification and model validation
    Burden, S. A.
    Revzen, S.
    Moore, T. Y.
    Sastry, S. S.
    Full, R. J.
    INTEGRATIVE AND COMPARATIVE BIOLOGY, 2013, 53 : E25 - E25
  • [10] Stochastic change detection in uncertain nonlinear systems using reduced-order models: system identification
    Yun, Hae-Bum
    Masri, Sami F.
    SMART MATERIALS AND STRUCTURES, 2008, 17 (01)