A Hybrid Approach for Short-Term Forecasting of Wind Speed

被引:13
作者
Tatinati, Sivanagaraja [1 ]
Veluvolu, Kalyana C. [1 ]
机构
[1] Kyungpook Natl Univ, Coll IT Engn, Sch Elect Engn, Taegu, South Korea
关键词
PREDICTION; POWER; PERFORMANCE;
D O I
10.1155/2013/548370
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a hybrid method for forecasting the wind speed. The wind speed data is first decomposed into intrinsic mode functions (IMFs) with empirical mode decomposition. Based on the partial autocorrelation factor of the individual IMFs, adaptive methods are then employed for the prediction of IMFs. Least squares-support vector machines are employed for IMFs with weak correlation factor, and autoregressive model with Kalman filter is employed for IMFs with high correlation factor. Multistep prediction with the proposed hybrid method resulted in improved forecasting. Results with wind speed data show that the proposed method provides better forecasting compared to the existing methods.
引用
收藏
页数:8
相关论文
共 29 条
[1]   Estimation of wind energy potential using finite mixture distribution models [J].
Akpinar, Sinan ;
Akpinar, Ebru Kavak .
ENERGY CONVERSION AND MANAGEMENT, 2009, 50 (04) :877-884
[2]  
Beyer H.G., 1994, Proceedings of the EWEC'94, P349
[3]   Application of artificial neural networks for the wind speed prediction of target station using reference stations data [J].
Bilgili, Mehmet ;
Sahin, Besir ;
Yasar, Abdulkadir .
RENEWABLE ENERGY, 2007, 32 (14) :2350-2360
[4]   Multiple architecture system for wind speed prediction [J].
Bouzgou, Hassen ;
Benoudjit, Nabil .
APPLIED ENERGY, 2011, 88 (07) :2463-2471
[5]   Short term wind speed forecasting in La Venta, Oaxaca, Mexico, using artificial neural networks [J].
Cadenas, Erasmo ;
Rivera, Wilfrido .
RENEWABLE ENERGY, 2009, 34 (01) :274-278
[6]   A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation [J].
Damousis, IG ;
Alexiadis, MC ;
Theocharis, JB ;
Dokopoulos, PS .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2004, 19 (02) :352-361
[7]   Performance and limitations of the Hilbert-Huang transformation (HHT) with an application to irregular water waves [J].
Dätig, M ;
Schlurmann, T .
OCEAN ENGINEERING, 2004, 31 (14-15) :1783-1834
[8]   ARMA based approaches for forecasting the tuple of wind speed and direction [J].
Erdem, Ergin ;
Shi, Jing .
APPLIED ENERGY, 2011, 88 (04) :1405-1414
[9]   The Forecasting Procedure for Long-Term Wind Speed in the Zhangye Area [J].
Guo, Zhenhai ;
Dong, Yao ;
Wang, Jianzhou ;
Lu, Haiyan .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2010, 2010
[10]   Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model [J].
Guo, Zhenhai ;
Zhao, Weigang ;
Lu, Haiyan ;
Wang, Jianzhou .
RENEWABLE ENERGY, 2012, 37 (01) :241-249