Jones-matrix formalism as a representation of the Lorentz group

被引:29
作者
Han, D
Kim, YS
Noz, ME
机构
[1] UNIV MARYLAND,DEPT PHYS,COLLEGE PK,MD 20742
[2] NYU,DEPT RADIOL,NEW YORK,NY 10016
来源
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION | 1997年 / 14卷 / 09期
关键词
D O I
10.1364/JOSAA.14.002290
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
It is shown that the two-by-two Jones-matrix formalism for polarization optics is a six-parameter two-by-two representation of the Lorentz group. The attenuation and phase-shift filters are represented, respectively, by the three-parameter rotation subgroup and the three-parameter Lorentz group for two spatial dimensions and one time dimension. The Lorentz group has another three-parameter subgroup, which is like the two-dimensional Euclidean group. Optical filters that may have this Euclidean symmetry are discussed in detail. It is shown that the Jones-matrix formalism can be extended to some of the nonorthogonal polarization coordinate systems within the framework of the Lorentz-group representation. (C) 1997 Optical Society of America.
引用
收藏
页码:2290 / 2298
页数:9
相关论文
共 37 条
[1]  
ABRAHAM R, 1978, F MECHANICS
[2]  
[Anonymous], 1995, ELECTROMAGNETIC SYMM
[3]   METAPLECTIC GROUP AND FOURIER OPTICS [J].
BACRY, H ;
CADILHAC, M .
PHYSICAL REVIEW A, 1981, 23 (05) :2533-2536
[5]   IRREDUCIBLE UNITARY REPRESENTATIONS OF THE LORENTZ GROUP [J].
BARGMANN, V .
ANNALS OF MATHEMATICS, 1947, 48 (03) :568-640
[6]  
BASKAL S, 1995, HEPTH9512088 LOS AL
[7]  
BORN M, 1980, PRINCIPLES OPTICS, P545
[8]   NEW FORMALISM FOR 2-PHOTON QUANTUM OPTICS .1. QUADRATURE PHASES AND SQUEEZED STATES [J].
CAVES, CM ;
SCHUMAKER, BL .
PHYSICAL REVIEW A, 1985, 31 (05) :3068-3092
[9]   LORENTZ-GROUP BERRY PHASES IN SQUEEZED LIGHT [J].
CHIAO, RY ;
JORDAN, TF .
PHYSICS LETTERS A, 1988, 132 (2-3) :77-81
[10]  
Chirkin A. S., 1993, Quantum Electronics, V23, P870, DOI 10.1070/QE1993v023n10ABEH003182