Symmetry-Aware 6D Object Pose Estimation via Multitask Learning

被引:1
|
作者
Zhang, Hongjia [1 ]
Huang, Junwen [1 ]
Xu, Xin [1 ]
Fang, Qiang [1 ]
Shi, Yifei [1 ]
机构
[1] Natl Univ Def Technol, Changsha 410073, Hunan, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
RECOGNITION;
D O I
10.1155/2020/8820500
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Although 6D object pose estimation has been intensively explored in the past decades, the performance is still not fully satisfactory, especially when it comes to symmetric objects. In this paper, we study the problem of 6D object pose estimation by leveraging the information of object symmetry. To this end, a network is proposed that predicts 6D object pose and object reflectional symmetry as well as the key points simultaneously via a multitask learning scheme. Consequently, the pose estimation is aware of and regulated by the symmetry axis and the key points of the to-be-estimated objects. Moreover, we devise an optimization function to refine the predicted 6D object pose by considering the predicted symmetry. Experiments on two datasets demonstrate that the proposed symmetry-aware approach outperforms the existing methods in terms of predicting 6D pose estimation of symmetric objects.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] A Pose Proposal and Refinement Network for Better 6D Object Pose Estimation
    Trabelsi, Ameni
    Chaabane, Mohamed
    Blanchard, Nathaniel
    Beveridge, Ross
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WACV 2021, 2021, : 2381 - 2390
  • [42] PointPoseNet: Point Pose Network for Robust 6D Object Pose Estimation
    Chen, Wei
    Duan, Jinming
    Basevi, Hector
    Chang, Hyung Jin
    Leonardis, Ales
    2020 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2020, : 2813 - 2822
  • [43] SC6D: Symmetry-agnostic and Correspondence-free 6D Object Pose Estimation
    Cai, Dingding
    Heikkila, Janne
    Rahtu, Esa
    2022 INTERNATIONAL CONFERENCE ON 3D VISION, 3DV, 2022, : 536 - 546
  • [44] ReFlow6D: Refraction-Guided Transparent Object 6D Pose Estimation via Intermediate Representation Learning
    Gupta, Hrishikesh
    Thalhammer, Stefan
    Weibel, Jean-Baptiste
    Haberl, Alexander
    Vincze, Markus
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (11): : 9438 - 9445
  • [45] Instance-Adaptive and Geometric-Aware Keypoint Learning for Category-Level 6D Object Pose Estimation
    Lin, Xiao
    Yang, Wenfei
    Gao, Yuan
    Zhan, Tianzhu
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2024, : 21040 - 21049
  • [46] DoPose-6D dataset for object segmentation and 6D pose estimation
    Gouda, Anas
    Ghanem, Abraham
    Reining, Christopher
    2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA, 2022, : 477 - 483
  • [47] A Comprehensive Review on 3D Object Detection and 6D Pose Estimation With Deep Learning
    Hoque, Sabera
    Arafat, Md. Yasir
    Xu, Shuxiang
    Maiti, Ananda
    Wei, Yuchen
    IEEE ACCESS, 2021, 9 : 143746 - 143770
  • [48] Learning latent geometric consistency for 6D object pose estimation in heavily cluttered scenes
    Li, Qingnan
    Hu, Ruimin
    Xiao, Jing
    Wang, Zhongyuan
    Chen, Yu
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2020, 70
  • [49] 6D Object Pose Estimation with Pairwise Compatible Geometric Features
    Lin, Muyuan
    Murali, Varun
    Karaman, Sertac
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 10966 - 10973
  • [50] DenseFusion: 6D Object Pose Estimation by Iterative Dense Fusion
    Wang, Chen
    Xu, Danfei
    Zhu, Yuke
    Martin-Martin, Roberto
    Lu, Cewu
    Li Fei-Fei
    Savarese, Silvio
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 3338 - 3347