Symmetry-Aware 6D Object Pose Estimation via Multitask Learning

被引:1
|
作者
Zhang, Hongjia [1 ]
Huang, Junwen [1 ]
Xu, Xin [1 ]
Fang, Qiang [1 ]
Shi, Yifei [1 ]
机构
[1] Natl Univ Def Technol, Changsha 410073, Hunan, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
RECOGNITION;
D O I
10.1155/2020/8820500
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Although 6D object pose estimation has been intensively explored in the past decades, the performance is still not fully satisfactory, especially when it comes to symmetric objects. In this paper, we study the problem of 6D object pose estimation by leveraging the information of object symmetry. To this end, a network is proposed that predicts 6D object pose and object reflectional symmetry as well as the key points simultaneously via a multitask learning scheme. Consequently, the pose estimation is aware of and regulated by the symmetry axis and the key points of the to-be-estimated objects. Moreover, we devise an optimization function to refine the predicted 6D object pose by considering the predicted symmetry. Experiments on two datasets demonstrate that the proposed symmetry-aware approach outperforms the existing methods in terms of predicting 6D pose estimation of symmetric objects.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] Single Shot 6D Object Pose Estimation
    Kleeberger, Kilian
    Huber, Marco F.
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 6239 - 6245
  • [12] BOP: Benchmark for 6D Object Pose Estimation
    Hodan, Tomas
    Michel, Frank
    Brachmann, Eric
    Kehl, Wadim
    Buch, Anders Glent
    Kraft, Dirk
    Drost, Bertram
    Vidal, Joel
    Ihrke, Stephan
    Zabulis, Xenophon
    Sahin, Caner
    Manhardt, Fabian
    Tombari, Federico
    Kim, Tae-Kyun
    Matas, Jiri
    Rother, Carsten
    COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 : 19 - 35
  • [13] Survey on 6D Pose Estimation of Rigid Object
    Chen, Jiale
    Zhang, Lijun
    Liu, Yi
    Xu, Chi
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 7440 - 7445
  • [14] Robust 6D Object Pose Estimation by Learning RGB-D Features
    Tian, Meng
    Pan, Liang
    Ang, Marcelo H., Jr.
    Lee, Gim Hee
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 6218 - 6224
  • [15] SO(3)-Pose: SO(3)-Equivariance Learning for 6D Object Pose Estimation
    Pan, Haoran
    Zhou, Jun
    Liu, Yuanpeng
    Lu, Xuequan
    Wang, Weiming
    Yan, Xuefeng
    Wei, Mingqiang
    COMPUTER GRAPHICS FORUM, 2022, 41 (07) : 371 - 381
  • [16] KDFNet: Learning Keypoint Distance Field for 6D Object Pose Estimation
    Liu, Xingyu
    Iwase, Shun
    Kitani, Kris M.
    2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 4631 - 4638
  • [17] Learning stereopsis from geometric synthesis for 6D object pose estimation
    State Key Laboratory of Industrial Control Technology and Institue of Cyber-Systems and Control, Zhejiang University, Zhejiang, China
    arXiv, 1600,
  • [18] 6D Object Pose Regression via Supervised Learning on Point Clouds
    Gao, Ge
    Lauri, Mikko
    Wang, Yulong
    Hu, Xiaolin
    Zhang, Jianwei
    Frintrop, Simone
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 3643 - 3649
  • [19] SD-Pose: Structural Discrepancy Aware Category-Level 6D Object Pose Estimation
    Li, Guowei
    Zhu, Dongchen
    Zhang, Guanghui
    Shi, Wenjun
    Zhang, Tianyu
    Zhang, Xiaolin
    Li, Jiamao
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 5674 - 5683
  • [20] Occlusion-Aware Self-Supervised Monocular 6D Object Pose Estimation
    Wang, Gu
    Manhardt, Fabian
    Liu, Xingyu
    Ji, Xiangyang
    Tombari, Federico
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (03) : 1788 - 1803