Thermal and electrochemical analysis of different flow field patterns in a PEM electrolyzer

被引:148
作者
Toghyani, S. [1 ]
Afshari, E. [1 ]
Baniasadi, E. [1 ]
Atyabi, S. A. [1 ]
机构
[1] Univ Isfahan, Fac Engn, Dept Mech Engn, Hezar Jerib Ave, Esfahan 8174673441, Iran
关键词
PEM electrolyzer cell; Three-dimensional model; Flow-field design; Serpentine; Electrochemical analysis; EXCHANGE MEMBRANE ELECTROLYZER; LIQUID/GAS DIFFUSION LAYERS; WATER ELECTROLYSIS; FUEL-CELLS; HYDROGEN-PRODUCTION; CURRENT COLLECTORS; 2-PHASE TRANSPORT; BIPOLAR PLATE; GAS-LIQUID; PERFORMANCE;
D O I
10.1016/j.electacta.2018.02.078
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
This paper presents a comparison between five flow field patterns including parallel, single path serpentine (1-path), dual path serpentine (2-path), triple path serpentine (3-path) and quadruple path serpentine (4-path) with 25 cm(2) active area to identify the pattern with the best performance in terms of distribution of molar fraction of produced hydrogen, current density, temperature and pressure drop. This is a three-dimensional (3-D) numerical analysis for different flow fields based on finite volume method at steady state, single phase and non-isothermal conditions. The results of the numerical analysis are in good agreement with experimental data. The results reveal that serpentine flow field provides better distribution of current density and temperature in comparison with parallel configuration. At voltage of 1.6 V, the current density for 1-path, 2-path, 3-path, and 4-path patterns are almost 0.28, 0.19, 0.13, and 0.10 A/cm(2) higher than parallel pattern, respectively. Also, for 1-path, 2-path, 3-path, and 4-path patterns, the hydrogen mole fraction at outlet of anode channel are 0.0034, 0.0028, 0.0023 and 0.0021, respectively. The results indicate that the 2-path pattern is relatively advantageous in terms of pressure drop, distribution of current density and hydrogen molar fraction. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:234 / 245
页数:12
相关论文
共 37 条
[1]   An investigation of the PEM fuel cells performance with partially restricted cathode flow channels and metal foam as a flow distributor [J].
Afshari, E. ;
Mosharaf-Dehkordi, M. ;
Rajabian, H. .
ENERGY, 2017, 118 :705-715
[2]   Effects of the cell thermal behavior and water phase change on a proton exchange membrane fuel cell performance [J].
Afshari, E. ;
Jazayeri, S. A. .
ENERGY CONVERSION AND MANAGEMENT, 2010, 51 (04) :655-662
[3]   Analyses of heat and water transport interactions in a proton exchange membrane fuel cell [J].
Afshari, E. ;
Jazayeri, S. A. .
JOURNAL OF POWER SOURCES, 2009, 194 (01) :423-432
[4]   A comprehensive review on PEM water electrolysis [J].
Carmo, Marcelo ;
Fritz, David L. ;
Merge, Juergen ;
Stolten, Detlef .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (12) :4901-4934
[5]   Membrane degradation in PEM water electrolyzer: Numerical modeling and experimental evidence of the influence of temperature and current density [J].
Chandesris, M. ;
Medeau, V. ;
Guillet, N. ;
Chelghoum, S. ;
Thoby, D. ;
Fouda-Onana, F. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (03) :1353-1366
[6]   Initial Performance and Durability of Ultra-Low Loaded NSTF Electrodes for PEM Electrolyzers [J].
Debe, M. K. ;
Hendricks, S. M. ;
Vernstrom, G. D. ;
Meyers, M. ;
Brostrom, M. ;
Stephens, M. ;
Chan, Q. ;
Willey, J. ;
Hamden, M. ;
Mittelsteadt, C. K. ;
Capuano, C. B. ;
Ayers, K. E. ;
Anderson, E. B. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (06) :K165-K176
[7]   Computational modelling of polymer electrolyte membrane (PEM) fuel cells: Challenges and opportunities [J].
Djilali, N. .
ENERGY, 2007, 32 (04) :269-280
[8]   THE EFFECTIVE THERMAL-CONDUCTIVITY OF COMPOSITES WITH COATED REINFORCEMENT AND THE APPLICATION TO IMPERFECT INTERFACES [J].
DUNN, ML ;
TAYA, M .
JOURNAL OF APPLIED PHYSICS, 1993, 73 (04) :1711-1722
[9]   Use of Nafion as a membrane separator in membrane introduction mass spectrometry [J].
Gernatova, Matilda ;
Janderka, Pavel ;
Marcinkova, Andrea ;
Ostrizek, Petr .
EUROPEAN JOURNAL OF MASS SPECTROMETRY, 2009, 15 (05) :571-577
[10]   In-plane and through-plane gas permeability of carbon fiber electrode backing layers [J].
Gostick, Jeff T. ;
Fowler, Michael W. ;
Pritzker, Mark D. ;
Ioannidis, Marios A. ;
Behra, Leya M. .
JOURNAL OF POWER SOURCES, 2006, 162 (01) :228-238