Mathematical analysis of an extended mumford-shah model for image segmentation

被引:3
作者
Tao, TCY [1 ]
Crisp, DJ
Van Der Hoek, J
机构
[1] Univ Adelaide, Dept Appl Math, Adelaide, SA 5005, Australia
[2] Cooperat Res Ctr Sensor Signal & Informat Proc, Mawson Lakes, SA 5095, Australia
关键词
image segmentation; Mumford-Shah model; Bayesian model; maximum a-posteriori; mathematical analysis;
D O I
10.1007/s10851-005-3631-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Morel and Solimini have established proofs of important properties of segmentations which can be seen as locally optimal for the simplest Mumford-Shah model in the continuous domain. A weakness of the latter is that it is not suitable for handling noisy images. We propose a Bayesian model to overcome these problems. We demonstrate that this Bayesian model indeed generalizes the original Mumford-Shah model, and we prove it has the same desirable properties as shown by Morel and Solimini.
引用
收藏
页码:327 / 340
页数:14
相关论文
共 23 条
[1]   APPROXIMATION OF FUNCTIONALS DEPENDING ON JUMPS BY ELLIPTIC FUNCTIONALS VIA GAMMA-CONVERGENCE [J].
AMBROSIO, L ;
TORTORELLI, VM .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1990, 43 (08) :999-1036
[2]  
AMBROSIO L, 1992, B UNIONE MAT ITAL, V6B, P105
[3]  
Ambrosio L., 2000, OX MATH M, pxviii, DOI 10.1017/S0024609301309281
[4]  
Aubert G, 2002, Mathematical problems in image processing: Partial differential equations and the calculus of variations
[5]  
Blake A., 1987, Visual Reconstruction
[6]  
Box GE., 2011, BAYESIAN INFERENCE S
[7]   IMAGE SEGMENTATION BY VARIATIONAL-METHODS - MUMFORD AND SHAH FUNCTIONAL AND THE DISCRETE APPROXIMATIONS [J].
CHAMBOLLE, A .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1995, 55 (03) :827-863
[8]  
Chambolle A, 1999, RAIRO-MATH MODEL NUM, V33, P651
[9]  
CRISP D, 2000, P IVCNZ, P180
[10]  
Dal Maso G., 1993, INTRO GAMMA CONVERGE