A posteriori error estimates for distributed convex optimal control problems

被引:175
作者
Liu, WB
Yan, NN
机构
[1] Univ Kent, CBS, Canterbury CT2 7NF, Kent, England
[2] Univ Kent, Inst Math & Stat, Canterbury CT2 7NF, Kent, England
[3] Chinese Acad Sci, Inst Syst Sci, Acad Math & Syst Sci, Beijing, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
distributed optimal control; finite element approximation; adaptive finite element methods; a posteriori error estimates;
D O I
10.1023/A:1014239012739
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present an a posteriori error analysis for finite element approximation of distributed convex optimal control problems. We derive a posteriori error estimates for the coupled state and control approximations under some assumptions which hold in many applications. Such estimates, which are apparently not available in the literature, can be used to construct reliable adaptive finite element approximation schemes for control problems. Explicit estimates are obtained for some model problems which frequently appear in real-life applications.
引用
收藏
页码:285 / 309
页数:25
相关论文
共 46 条
[1]   A posteriori error estimation in finite element analysis [J].
Ainsworth, M ;
Oden, JT .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 142 (1-2) :1-88
[2]  
AINSWORTH M, 1993, NUMER METH PART D E, V9, P22
[3]  
ALOTTO P, 1996, IEEE T MAGN, V32
[4]   CONVERGENCE OF FINITE-ELEMENT APPROXIMATIONS TO STATE CONSTRAINED CONVEX PARABOLIC BOUNDARY CONTROL-PROBLEMS [J].
ALT, W ;
MACKENROTH, U .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1989, 27 (04) :718-736
[5]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[6]   MESH REFINEMENT FOR SHAPE OPTIMIZATION [J].
BANICHUK, NV ;
BARTHOLD, FJ ;
FALK, A ;
STEIN, E .
STRUCTURAL OPTIMIZATION, 1995, 9 (01) :46-51
[7]  
BANK RE, 1985, MATH COMPUT, V44, P283, DOI 10.1090/S0025-5718-1985-0777265-X
[8]   A POSTERIORI ERROR-ESTIMATES FOR THE ADAPTATIVE COMPUTATION OF QUASINEWTONIAN FLOWS [J].
BARANGER, J ;
ELAMRI, H .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1991, 25 (01) :31-47
[9]  
Barbu V., 1984, OPTIMAL CONTROL VARI, DOI DOI 10.1007/BF01442167
[10]  
BARRETT JW, 1994, PITMAN RES, V303, P1