Video Summarization with Long Short-Term Memory

被引:412
|
作者
Zhang, Ke [1 ]
Chao, Wei-Lun [1 ]
Sha, Fei [2 ]
Grauman, Kristen [3 ]
机构
[1] Univ Southern Calif, Dept Comp Sci, Los Angeles, CA 90007 USA
[2] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90024 USA
[3] Univ Texas Austin, Dept Comp Sci, Austin, TX 78712 USA
来源
COMPUTER VISION - ECCV 2016, PT VII | 2016年 / 9911卷
关键词
Video summarization; Long short-term memory; SPEECH RECOGNITION;
D O I
10.1007/978-3-319-46478-7_47
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a novel supervised learning technique for summarizing videos by automatically selecting keyframes or key subshots. Casting the task as a structured prediction problem, our main idea is to use Long Short-Term Memory (LSTM) to model the variable-range temporal dependency among video frames, so as to derive both representative and compact video summaries. The proposed model successfully accounts for the sequential structure crucial to generating meaningful video summaries, leading to state-of-the-art results on two benchmark datasets. In addition to advances in modeling techniques, we introduce a strategy to address the need for a large amount of annotated data for training complex learning approaches to summarization. There, our main idea is to exploit auxiliary annotated video summarization datasets, in spite of their heterogeneity in visual styles and contents. Specifically, we show that domain adaptation techniques can improve learning by reducing the discrepancies in the original datasets' statistical properties.
引用
收藏
页码:766 / 782
页数:17
相关论文
共 50 条
  • [21] A forecast model of short-term wind speed based on the attention mechanism and long short-term memory
    Xing, Wang
    Qi-liang, Wu
    Gui-rong, Tan
    Dai-li, Qian
    Ke, Zhou
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (15) : 45603 - 45623
  • [22] Short-term power load forecasting using integrated methods based on long short-term memory
    WenJie Zhang
    Jian Qin
    Feng Mei
    JunJie Fu
    Bo Dai
    WenWu Yu
    Science China Technological Sciences, 2020, 63 : 614 - 624
  • [23] A forecast model of short-term wind speed based on the attention mechanism and long short-term memory
    Wang Xing
    Wu Qi-liang
    Tan Gui-rong
    Qian Dai-li
    Zhou Ke
    Multimedia Tools and Applications, 2024, 83 : 45603 - 45623
  • [24] Toward Edge-Assisted Video Content Intelligent Caching With Long Short-Term Memory Learning
    Zhang, Cong
    Pang, Haitian
    Liu, Jiangchuan
    Tang, Shizhi
    Zhang, Ruixiao
    Wang, Dan
    Sun, Lifeng
    IEEE ACCESS, 2019, 7 : 152832 - 152846
  • [25] Short-term power load forecasting using integrated methods based on long short-term memory
    Zhang, WenJie
    Qin, Jian
    Mei, Feng
    Fu, JunJie
    Dai, Bo
    Yu, WenWu
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2020, 63 (04) : 614 - 624
  • [26] Short-term power load forecasting using integrated methods based on long short-term memory
    ZHANG WenJie
    QIN Jian
    MEI Feng
    FU JunJie
    DAI Bo
    YU WenWu
    Science China(Technological Sciences), 2020, (04) : 614 - 624
  • [27] Predicting long-term trends in physical properties from short-term molecular dynamics simulations using long short-term memory
    Noda, Kota
    Shibuta, Yasushi
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2024, 36 (38)
  • [28] Long Short-Term Memory Network Design for Analog Computing
    Zhao, Zhou
    Srivastava, Ashok
    Peng, Lu
    Chen, Qing
    ACM JOURNAL ON EMERGING TECHNOLOGIES IN COMPUTING SYSTEMS, 2019, 15 (01)
  • [29] Optical Music Recognition by Long Short-Term Memory Networks
    Baro, Arnau
    Riba, Pau
    Calvo-Zaragoza, Jorge
    Fornes, Alicia
    GRAPHICS RECOGNITION: CURRENT TRENDS AND EVOLUTIONS, GREC 2017, 2018, 11009 : 81 - 95
  • [30] An accident diagnosis algorithm using long short-term memory
    Yang, Jaemin
    Kim, Jonghyun
    NUCLEAR ENGINEERING AND TECHNOLOGY, 2018, 50 (04) : 582 - 588