Video Summarization with Long Short-Term Memory

被引:412
|
作者
Zhang, Ke [1 ]
Chao, Wei-Lun [1 ]
Sha, Fei [2 ]
Grauman, Kristen [3 ]
机构
[1] Univ Southern Calif, Dept Comp Sci, Los Angeles, CA 90007 USA
[2] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90024 USA
[3] Univ Texas Austin, Dept Comp Sci, Austin, TX 78712 USA
来源
COMPUTER VISION - ECCV 2016, PT VII | 2016年 / 9911卷
关键词
Video summarization; Long short-term memory; SPEECH RECOGNITION;
D O I
10.1007/978-3-319-46478-7_47
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a novel supervised learning technique for summarizing videos by automatically selecting keyframes or key subshots. Casting the task as a structured prediction problem, our main idea is to use Long Short-Term Memory (LSTM) to model the variable-range temporal dependency among video frames, so as to derive both representative and compact video summaries. The proposed model successfully accounts for the sequential structure crucial to generating meaningful video summaries, leading to state-of-the-art results on two benchmark datasets. In addition to advances in modeling techniques, we introduce a strategy to address the need for a large amount of annotated data for training complex learning approaches to summarization. There, our main idea is to exploit auxiliary annotated video summarization datasets, in spite of their heterogeneity in visual styles and contents. Specifically, we show that domain adaptation techniques can improve learning by reducing the discrepancies in the original datasets' statistical properties.
引用
收藏
页码:766 / 782
页数:17
相关论文
共 50 条
  • [1] Short-term Load Forecasting with Distributed Long Short-Term Memory
    Dong, Yi
    Chen, Yang
    Zhao, Xingyu
    Huang, Xiaowei
    2023 IEEE POWER & ENERGY SOCIETY INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE, ISGT, 2023,
  • [2] LIPREADING WITH LONG SHORT-TERM MEMORY
    Wand, Michael
    Koutnik, Jan
    Schmidhuber, Jurgen
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 6115 - 6119
  • [3] QUANTUM LONG SHORT-TERM MEMORY
    Chen, Samuel Yen-Chi
    Yoo, Shinjae
    Fang, Yao-Lung L.
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 8622 - 8626
  • [4] Short-Term Load Forecasting using A Long Short-Term Memory Network
    Liu, Chang
    Jin, Zhijian
    Gu, Jie
    Qiu, Caiming
    2017 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE EUROPE (ISGT-EUROPE), 2017,
  • [5] A Video Gesture Processing Method Based on Convolution and Long Short-Term Memory Network
    Ding Xiaoxue
    Xu Chao
    Yan Quya
    2019 IEEE 4TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND BIG DATA ANALYSIS (ICCCBDA), 2019, : 383 - 388
  • [6] Deep Long Short-Term Memory Networks for Speech Recognition
    Chien, Jen-Tzung
    Misbullah, Alim
    2016 10TH INTERNATIONAL SYMPOSIUM ON CHINESE SPOKEN LANGUAGE PROCESSING (ISCSLP), 2016,
  • [7] A review on the long short-term memory model
    Van Houdt, Greg
    Mosquera, Carlos
    Napoles, Gonzalo
    ARTIFICIAL INTELLIGENCE REVIEW, 2020, 53 (08) : 5929 - 5955
  • [8] On the Initialization of Long Short-Term Memory Networks
    Ghazi, Mostafa Mehdipour
    Nielsen, Mads
    Pai, Akshay
    Modat, Marc
    Cardoso, M. Jorge
    Ourselin, Sebastien
    Sorensen, Lauge
    NEURAL INFORMATION PROCESSING (ICONIP 2019), PT I, 2019, 11953 : 275 - 286
  • [9] A review on the long short-term memory model
    Greg Van Houdt
    Carlos Mosquera
    Gonzalo Nápoles
    Artificial Intelligence Review, 2020, 53 : 5929 - 5955
  • [10] Evolving Long Short-Term Memory Networks
    Neto, Vicente Coelho Lobo
    Passos, Leandro Aparecido
    Papa, Joao Paulo
    COMPUTATIONAL SCIENCE - ICCS 2020, PT II, 2020, 12138 : 337 - 350