A Selective Markovianity Approach for Image Segmentation

被引:0
作者
Melouah, A.
Merouani, H.
机构
来源
PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 6 | 2005年
关键词
Markovianity; response time; segmentation; study zone;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A new Markovianity approach is introduced in this paper. This approach reduces the response time of classic Markov Random Fields approach. First, one region is determinated by a clustering technique. Then, this region is excluded from the study. The remaining pixel form the study zone and they are selected for a Markovianity segmentation task. With Selective Markovianity approach, segmentation process is faster than classic one.
引用
收藏
页码:202 / 204
页数:3
相关论文
共 10 条
  • [1] [Anonymous], BERK S MATH STAT PRO
  • [2] [Anonymous], MARKOV RANDOM FIELD
  • [3] Baxes G.A., 1994, DIGITAL IMAGE PROCES
  • [4] CHERIET M, 1998, IEEE T IMAGE PROCESS, V7
  • [5] FHILIPPFOLIGUET S, 2000, LOGIQUE FLOUE APPL
  • [6] STOCHASTIC RELAXATION, GIBBS DISTRIBUTIONS, AND THE BAYESIAN RESTORATION OF IMAGES
    GEMAN, S
    GEMAN, D
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1984, 6 (06) : 721 - 741
  • [7] Li SZ., 1995, Markov random field modeling in computer vision
  • [8] LOW-LEVEL IMAGE SEGMENTATION - AN EXPERT SYSTEM
    NAZIF, AM
    LEVINE, MD
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1984, 6 (05) : 555 - 577
  • [9] WESOLKOWSKI S, PROBABILISTIC FRAMEW
  • [10] WESOLKOWSKI S, ADAPTIVE COLOR IMAGE