The Kalman-Yakubovich-Popov theorem for stabilizable hyperbolic boundary control systems

被引:13
作者
Pandolfi, L [1 ]
机构
[1] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
关键词
D O I
10.1007/BF01272886
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we present a version of the Kalman-Yakubovich-Popov theorem for a class of boundary control systems of hyperbolic type. Unstable, controllable systems are considered and stabilizability with unbounded feedbacks is permitted.
引用
收藏
页码:478 / 493
页数:16
相关论文
共 50 条
  • [31] Explicit SOS decompositions of univariate polynomial matrices and the Kalman-Yakubovich-Popov lemma
    Aylward, Erin M.
    Itani, Sleiman M.
    Parrilo, Pablo A.
    PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 6249 - +
  • [32] About a Class of Positive Hybrid Dynamic Linear Systems and an Associate Extended Kalman-Yakubovich-Popov Lemma
    De la Sen, M.
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2017, 2017
  • [34] Generalized Kalman-Yakubovich-Popov Lemma based stability conditions for 2D linear systems
    Paszke, Wojciech
    Rogers, Eric
    Galkowski, Krzysztof
    2016 EUROPEAN CONTROL CONFERENCE (ECC), 2016, : 2608 - 2613
  • [35] Generalized Two-Dimensional Kalman-Yakubovich-Popov Lemma for Discrete Roesser Model
    Yang, Ran
    Xie, Lihua
    Zhang, Cishen
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2008, 55 (10) : 3223 - 3233
  • [36] A Structure Exploiting Preprocessor for Semidefinite Programs Derived From the Kalman-Yakubovich-Popov Lemma
    Wallin, Ragnar
    Hansson, Anders
    Johansson, Janne Harju
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (04) : 697 - 704
  • [37] Generalized Kalman-Yakubovich-Popov Lemma for 2-D FM LSS Model
    Li, Xianwei
    Gao, Huijun
    Wang, Changhong
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (12) : 3090 - 3103
  • [38] Design of delta-sigma modulators via generalized Kalman-Yakubovich-Popov lemma
    Li, Xianwei
    Yu, Changbin
    Gao, Huijun
    AUTOMATICA, 2014, 50 (10) : 2700 - 2708
  • [39] About the Kalman-Yakubovich-Popov Lemma and Non-minimal State-Space Realizations
    De la Sen, Manuel
    2017 25TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2017, : 852 - 857
  • [40] The infinite-dimensional continuous time Kalman-Yakubovich-Popov inequality (for scattering supply rate)
    Arov, Damir Z.
    Staffans, Olof J.
    2005 44th IEEE Conference on Decision and Control & European Control Conference, Vols 1-8, 2005, : 5947 - 5952