Theoretical Modeling of a Photoconductive Antenna in a Terahertz Pulsed System

被引:85
作者
Khiabani, Neda [1 ]
Huang, Yi [1 ]
Shen, Yao-Chun [1 ]
Boyes, StephenJ. [1 ]
机构
[1] Univ Liverpool, Dept Elect Engn & Elect, Liverpool L69 3GJ, Merseyside, England
基金
英国工程与自然科学研究理事会;
关键词
Equivalent circuit; optical-to-THz conversion efficiency; THz photoconductive antenna; THz radiated power; TEMPERATURE-GROWN GAAS; CARRIER DYNAMICS; RADIATION; EMISSION; GENERATION; CONVERSION;
D O I
10.1109/TAP.2013.2239599
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The most common device for terahertz (THz) wave generation and detection is a THz photoconductive antenna. This paper examines the factors which affect the radiated power and optical-to-THz power conversion efficiency of the antenna. A novel equivalent circuit model using lumped elements is developed for analyzing the performance of these antennas. In this model, whilst keeping the simplicity of the lumped element approach, the underlying physical behavior of the device is taken into account when calculating the circuit elements. Based on the model, the influence of various parameters on the optical-to-THz power conversion efficiency and radiated power is then investigated. The simulated results agree well with published measured results. The model predicts that an increase in the laser power and/or bias voltage, and a reduction in reflections from the air-substrate can improve the optical-to-THz power conversion efficiency of the device. This novel model is very useful for both designing a THz antenna and tuning a THz system to achieve maximized optical-to-THz power conversion efficiency and THz radiated power.
引用
收藏
页码:1538 / 1546
页数:9
相关论文
共 31 条
[11]  
Huang Yi., 2008, Antennas: From theory to practice
[12]   Terahertz spectroscopy and imaging - Modern techniques and applications [J].
Jepsen, Peter Uhd ;
Cooke, David G. ;
Koch, Martin .
LASER & PHOTONICS REVIEWS, 2011, 5 (01) :124-166
[13]   Generation and detection of terahertz pulses from biased semiconductor antennas [J].
Jepsen, PU ;
Jacobsen, RH ;
Keiding, SR .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1996, 13 (11) :2424-2436
[14]  
Khiabani N., 2011, LAPC NOV 14 15
[15]   Coulomb and radiation screening in photoconductive terahertz sources [J].
Kim, DS ;
Citrin, DS .
APPLIED PHYSICS LETTERS, 2006, 88 (16)
[16]  
Lee Y.S., 2009, Principles of Terahertz Science and Technology
[17]  
Loata G. C., 2007, THESIS GOETHE U FRAN
[18]   Radiation field screening in photoconductive antennae studied via pulsed terahertz emission spectroscopy [J].
Loata, Gabriel C. ;
Thomson, Mark D. ;
Loeffler, Torsten ;
Roskos, Hartmut G. .
APPLIED PHYSICS LETTERS, 2007, 91 (23)
[19]   Terahertz time-domain-spectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting components [J].
Pacebutas, V. ;
Biciunas, A. ;
Balakauskas, S. ;
Krotkus, A. ;
Andriukaitis, G. ;
Lorenc, D. ;
Pugzlys, A. ;
Baltuska, A. .
APPLIED PHYSICS LETTERS, 2010, 97 (03)
[20]   Enhancement of Terahertz Pulse Emission by Optical Nanoantenna [J].
Park, Sang-Gil ;
Jin, Kyong Hwan ;
Vi, Minwoo ;
Ye, Jong Chul ;
Ahn, Jaewook ;
Jeong, Ki-Hun .
ACS NANO, 2012, 6 (03) :2026-2031