Segmentation and Analysis of Corpus Callosum in Autistic MR Brain Images Using Reaction Diffusion Level Sets

被引:13
作者
Fredo, A. R. Jac [1 ]
Kavitha, G. [1 ]
Ramakrishnan, S. [2 ]
机构
[1] Anna Univ, Dept Elect Engn, Madras 600044, Tamil Nadu, India
[2] Indian Inst Technol, Dept Appl Mech, Biomed Engn Grp, Noninvas Imaging & Diagnost Lab, Madras 600036, Tamil Nadu, India
关键词
Autism; Corpus Callosum; Fuzzy C-Means; Initial Contour; Level Set; Stopping Function; Similarity Measure;
D O I
10.1166/jmihi.2015.1442
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this work, corpus callosum of control and autistic MR brain images are segmented using reaction diffusion level set method. The level set function is initialized manually. The evolution of level set contour is regularized by reaction diffusion method. Two different stopping functions are analysed to converge the level set function. The corpus callosum segmented using level set method is validated with the ground truth. Results show that reaction diffusion level set method is able to segment the corpus callosum from other brain segments. Also, the corpus callosum segmented using reaction diffusion level set gives high value of similarity with the ground truth. The stopping function based on area inside the region of interest gives high value of similarity measures for segmentation of corpus callosum with less number of iterations. The area calculated from the reaction diffusion based level set using the above stopping criterion and ground truth gives high correlation (R = 0.99) for both control and autism images. As the proposed method of segmentation and analysis. seems to be clinically significant, this can be used for the mass screening of autism like brain disorders.
引用
收藏
页码:737 / 741
页数:5
相关论文
共 19 条
[1]   Modified Gradient Search for Level Set Based Image Segmentation [J].
Andersson, Thord ;
Lathen, Gunnar ;
Lenz, Reiner ;
Borga, Magnus .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (02) :621-630
[2]  
[Anonymous], 2001, DIAGN STAT MAN MENT, V4th
[3]   Stability and convergence of the level set method in computer vision [J].
Chaudhury, Kunal N. ;
Ramakrishnan, K. R. .
PATTERN RECOGNITION LETTERS, 2007, 28 (07) :884-893
[4]  
Clement V, 2012, P INT C MED IM BIOM, P1
[5]   Generalized overlap measures for evaluation and validation in medical image analysis [J].
Crum, William R. ;
Camara, Oscar ;
Hill, Derek L. G. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2006, 25 (11) :1451-1461
[6]   The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism [J].
Di Martino, A. ;
Yan, C-G ;
Li, Q. ;
Denio, E. ;
Castellanos, F. X. ;
Alaerts, K. ;
Anderson, J. S. ;
Assaf, M. ;
Bookheimer, S. Y. ;
Dapretto, M. ;
Deen, B. ;
Delmonte, S. ;
Dinstein, I. ;
Ertl-Wagner, B. ;
Fair, D. A. ;
Gallagher, L. ;
Kennedy, D. P. ;
Keown, C. L. ;
Keysers, C. ;
Lainhart, J. E. ;
Lord, C. ;
Luna, B. ;
Menon, V. ;
Minshew, N. J. ;
Monk, C. S. ;
Mueller, S. ;
Mueller, R. A. ;
Nebel, M. B. ;
Nigg, J. T. ;
O'Hearn, K. ;
Pelphrey, K. A. ;
Peltier, S. J. ;
Rudie, J. D. ;
Sunaert, S. ;
Thioux, M. ;
Tyszka, J. M. ;
Uddin, L. Q. ;
Verhoeven, J. S. ;
Wenderoth, N. ;
Wiggins, J. L. ;
Mostofsky, S. H. ;
Milham, M. P. .
MOLECULAR PSYCHIATRY, 2014, 19 (06) :659-667
[7]   Accurate Automated Detection of Autism Related Corpus Callosum Abnormalities [J].
El-Baz, Ayman ;
Elnakib, Ahmed ;
Casanova, Manuel F. ;
Gimel'farb, Georgy ;
Switala, Andrew E. ;
Jordan, Desha ;
Rainey, Sabrina .
JOURNAL OF MEDICAL SYSTEMS, 2011, 35 (05) :929-939
[8]  
Elsayed A, 2012, DATA MINING APPLICATIONS IN ENGINEERING AND MEDICINE, P225, DOI 10.5772/50019
[9]  
Golestani N, 2014, EXCLI J, V13, P241
[10]  
He Q, 2008, IEEE ENG MED BIO, P3900, DOI 10.1109/IEMBS.2008.4650062