Quantitative understanding of negative thermal expansion in scandium trifluoride from neutron total scattering measurements

被引:32
作者
Dove, Martin T. [1 ,2 ,3 ]
Du, Juan [3 ]
Wei, Zhongsheng [3 ]
Keen, David A. [4 ]
Tucker, Matthew G. [5 ]
Phillips, Anthony E. [3 ]
机构
[1] Sichuan Univ, Sch Comp Sci & Phys Sci & Technol, Chengdu 610065, Peoples R China
[2] Wuhan Univ Technol, Sch Sci, Dept Phys, 205 Luoshi Rd, Wuhan 430070, Hubei, Peoples R China
[3] Queen Mary Univ London, Sch Phys & Astron, Mile End Rd, London E1 4NS, England
[4] Rutherford Appleton Lab, ISIS Facil, Harwell Campus, Didcot OX11 0QX, Oxon, England
[5] Oak Ridge Natl Lab, Neutron Scattering Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA
基金
英国工程与自然科学研究理事会;
关键词
PAIR DISTRIBUTION FUNCTION; REVERSE MONTE-CARLO; RIGID-UNIT MODES; PHASE-TRANSITIONS; DYNAMICS; BEHAVIOR; PROGRAM; QUARTZ;
D O I
10.1103/PhysRevB.102.094105
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Negative thermal expansion (NTE)-the phenomenon where some materials shrink rather than expand when heated-is both intriguing and useful but remains poorly understood. Current understanding hinges on the role of specific vibrational modes, but in fact thermal expansion is a weighted sum of contributions from every possible mode. Here we overcome this difficulty by deriving a real-space model of atomic motion in the prototypical NTE material scandium trifluoride, ScF3, from total neutron scattering data. We show that NTE in this material depends not only on rigid unit modes-the vibrations in which the scandium coordination octahedra remain undistorted-but also on modes that distort these octahedra. Furthermore, in contrast with previous predictions, we show that the quasiharmonic approximation coupled with renormalization through anharmonic interactions describes this behavior well. Our results point the way towards a new understanding of how NTE is manifested in real materials.
引用
收藏
页数:12
相关论文
共 78 条
[1]   Lattice dynamics and hydrostatic-pressure-induced phase transitions in ScF3 [J].
Aleksandrov, KS ;
Voronov, VN ;
Vtyurin, AN ;
Goryainov, SV ;
Zamkova, NG ;
Zinenko, VI ;
Krylov, AS .
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2002, 94 (05) :977-984
[2]   Mantid-Data analysis and visualization package for neutron scattering and μ SR experiments [J].
Arnold, O. ;
Bilheux, J. C. ;
Borreguero, J. M. ;
Buts, A. ;
Campbell, S. I. ;
Chapon, L. ;
Doucet, M. ;
Draper, N. ;
Leal, R. Ferraz ;
Gigg, M. A. ;
Lynch, V. E. ;
Markvardsen, A. ;
Mikkelson, D. J. ;
Mikkelson, R. L. ;
Miller, R. ;
Palmen, K. ;
Parker, P. ;
Passos, G. ;
Perring, T. G. ;
Peterson, P. F. ;
Ren, S. ;
Reuter, M. A. ;
Savici, A. T. ;
Taylor, J. W. ;
Taylor, R. J. ;
Tolchenoy, R. ;
Zhou, W. ;
Zikoysky, J. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2014, 764 :156-166
[3]   Negative thermal expansion [J].
Barrera, GD ;
Bruno, JAO ;
Barron, THK ;
Allan, NL .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2005, 17 (04) :R217-R252
[4]   Anharmonicity and scissoring modes in the negative thermal expansion materials ScF3 and CaZrF6 [J].
Bird, T. A. ;
Woodland-Scott, J. ;
Hu, L. ;
Wharmby, M. T. ;
Chen, J. ;
Goodwin, A. L. ;
Senn, M. S. .
PHYSICAL REVIEW B, 2020, 101 (06)
[5]   Ab initio molecular dynamics simulations of negative thermal expansion in ScF3: The effect of the supercell size [J].
Bocharov, D. ;
Krack, M. ;
Rafalskij, Yu ;
Kuzmin, A. ;
Purans, J. .
COMPUTATIONAL MATERIALS SCIENCE, 2020, 171
[6]   Negative thermal expansion of ScF3: first principles vs empirical molecular dynamics [J].
Bocharov, Dmitry ;
Rafalskij, Yuri ;
Krack, Matthias ;
Putnina, Mara ;
Kuzmin, Alexei .
FUNCTIONAL MATERIALS AND NANOTECHNOLOGIES (FM&NT 2018), 2019, 503
[7]   Local Vibrations and Negative Thermal Expansion in ZrW2O8 [J].
Bridges, F. ;
Keiber, T. ;
Juhas, P. ;
Billinge, S. J. L. ;
Sutton, L. ;
Wilde, J. ;
Kowach, Glen R. .
PHYSICAL REVIEW LETTERS, 2014, 112 (04)
[8]   Anomalous Thermal Expansion of Cuprites: A Combined High Resolution Pair Distribution Function and Geometric Analysis [J].
Chapman, Karena W. ;
Chupas, Peter J. .
CHEMISTRY OF MATERIALS, 2009, 21 (02) :425-431
[9]   Direct observation of a transverse vibrational mechanism for negative thermal expansion in Zn(CN)2:: An atomic pair distribution function analysis [J].
Chapman, KW ;
Chupas, PJ ;
Kepert, CJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (44) :15630-15636
[10]   Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications [J].
Chen, Jun ;
Hu, Lei ;
Deng, Jinxia ;
Xing, Xianran .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (11) :3522-3567