Hyperpolygon spaces and moduli spaces of parabolic Higgs bundles

被引:8
作者
Godinho, Leonor [1 ]
Mandini, Alessia [2 ]
机构
[1] Inst Super Tecn, Dept Matemat, P-1049001 Lisbon, Portugal
[2] Inst Super Tecn, Ctr Amilise Matemat & Geometria & Sistemas Dinam, P-1049001 Lisbon, Portugal
关键词
Moduli spaces; Hyperpolygon spaces; Parabolic Higgs bundles; COMPACTIFICATION; SHEAVES;
D O I
10.1016/j.aim.2013.04.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given an n-tuple of positive real numbers a we consider the hyperpolygon space X(alpha), the hyperkahler quotient analogue to the Kahler moduli space of polygons in R-3 We prove the existence of an isomorphism between hyperpolygon spaces and moduli spaces of stable, rank-2, holomorphically trivial parabolic Higgs bundles over CP1 with fixed determinant and trace-free Higgs field. This isomorphism allows us to prove that hyperpolygon spaces X(alpha) undergo an elementary transformation in the sense of Mukai as alpha crosses a wall in the space of its admissible values. We describe the changes in the core of X(alpha) as a result of this transformation as well as the changes in the nilpotent cone of the corresponding moduli spaces of parabolic Higgs bundles. Moreover, we study the intersection rings of the core components of X(alpha). In particular, we find generators of these rings, prove a recursion relation in n for their intersection numbers and use it to obtain explicit formulas for the computation of these numbers. Using our isomorphism, we obtain similar formulas for each connected component of the nilpotent cone of the corresponding moduli spaces of parabolic Higgs bundles thus determining their intersection rings. As a final application of our isomorphism we describe the cohomology ring structure of these moduli spaces of parabolic Higgs bundles and of the components of their nilpotent cone. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:465 / 532
页数:68
相关论文
共 43 条
[1]   INTERSECTION NUMBERS OF POLYGON SPACES [J].
Agapito, Jose ;
Godinho, Leonor .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (09) :4969-4997
[2]  
Agnihotri S, 1998, MATH RES LETT, V5, P817
[3]  
[Anonymous], 1992, Grad. Texts in Math., DOI DOI 10.1007/978-1-4612-2034-3
[4]  
[Anonymous], 2006, OXFORD MATH MONOGR
[5]  
Atiyah M.F., 1957, Trans. Amer. Math. Soc., V85, P181
[6]   PARABOLIC BUNDLES, ELLIPTIC-SURFACES AND SU(2)-REPRESENTATION SPACES OF GENUS ZERO FUCHSIAN-GROUPS [J].
BAUER, S .
MATHEMATISCHE ANNALEN, 1991, 290 (03) :509-526
[7]   STABLE PARABOLIC BUNDLES AND FLAT SINGULAR CONNECTIONS [J].
BIQUARD, O .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1991, 119 (02) :231-257
[8]  
Boalch P., ARXIV08061050
[9]  
Boalch P., ARXIV12036607
[10]   Moduli spaces of parabolic higgs bundles and parabolic K(D) pairs over smooth curves .1. [J].
Boden, HU ;
Yokogawa, K .
INTERNATIONAL JOURNAL OF MATHEMATICS, 1996, 7 (05) :573-598