Social Graph Transformer Networks for Pedestrian Trajectory Prediction in Complex Social Scenarios

被引:12
作者
Liu, Yao [1 ]
Yao, Lina [2 ]
Li, Binghao [3 ]
Wang, Xianzhi [4 ]
Sammut, Claude [1 ]
机构
[1] Univ New South Wales, Sch Comp Sci & Engn, Sydney, NSW, Australia
[2] Univ New South Wales, Sch Comp Sci & Engn, CSIRO, Data 61, Sydney, NSW, Australia
[3] Univ New South Wales, Sch Minerals & Energy Resources Engn, Sydney, NSW, Australia
[4] Univ Technol Sydney, Sch Comp Sci, Sydney, NSW, Australia
来源
PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022 | 2022年
关键词
Pedestrian Trajectory Prediction; Social Interaction; Spatio-temporal Graph; Transformer;
D O I
10.1145/3511808.3557455
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Pedestrian trajectory prediction is essential for many modern applications, such as abnormal motion analysis and collision avoidance for improved traffic safety. Previous studies still face challenges in embracing high social interaction, dynamics, and multi-modality for achieving high accuracy with long-time predictions. We propose Social Graph Transformer Networks for multi-modal prediction of pedestrian trajectories, where we combine Graph Convolutional Network and Transformer Network by generating stable resolution pseudo-images from Spatio-temporal graphs through a designed stacking and interception method. Specifically, we adopt adjacency matrices to obtain Spatio-temporal features and Transformer for long-time trajectory predictions. As such, we retrain the advantages of both, i.e., the ability to aggregate information over an arbitrary number of neighbors and to conduct complex time-dependent data processing. Our experimental results show that our model reduces the final displacement error and achieves state-of-the-art in multiple metrics. The module's effectiveness is demonstrated through ablation experiments.
引用
收藏
页码:1339 / 1349
页数:11
相关论文
共 50 条
[31]   AN ACCURATE SPATIAL TEMPORAL GRAPH ATTENTION NETWORK FOR PEDESTRIAN TRAJECTORY PREDICTION [J].
Zhang, Yanbo ;
Zheng, Liying .
PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2024, 25 (04) :335-346
[32]   Static-dynamic global graph representation for pedestrian trajectory prediction [J].
Zhou, Hao ;
Yang, Xu ;
Fan, Mingyu ;
Huang, Hai ;
Ren, Dongchun ;
Xia, Huaxia .
KNOWLEDGE-BASED SYSTEMS, 2023, 277
[33]   WTGCN: wavelet transform graph convolution network for pedestrian trajectory prediction [J].
Chen, Wangxing ;
Sang, Haifeng ;
Wang, Jinyu ;
Zhao, Zishan .
INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (12) :5531-5548
[34]   Multibranch Attentive Transformer With Joint Temporal and Social Correlations for Traffic Agents Trajectory Prediction [J].
Chen, Xiaobo ;
Liang, Yuwen ;
Wang, Junyu ;
Ye, Qiaolin ;
Cai, Yingfeng .
IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2025, 12 (02) :525-538
[35]   D-STGCN: Dynamic Pedestrian Trajectory Prediction Using Spatio-Temporal Graph Convolutional Networks [J].
Sighencea, Bogdan Ilie ;
Stanciu, Ion Rares ;
Caleanu, Catalin Daniel .
ELECTRONICS, 2023, 12 (03)
[36]   VOSTN: Variational One-shot Transformer Network for Pedestrian Trajectory Prediction [J].
Wang, Jinyu ;
Sang, Haifeng ;
Chen, Wangxing ;
Zhao, Zishan .
PHYSICA SCRIPTA, 2024, 99 (02)
[37]   Multi-Relational Pedestrian Trajectory Prediction in Complex Scenes [J].
Peng, Wenshuo ;
Cui, Zhoujuan ;
Duan, Yiping ;
Tao, Xiaoming .
2022 IEEE 96TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-FALL), 2022,
[38]   The auto-correlation enhanced transformer for information diffusion prediction in social networks [J].
Du, Yuxuan ;
Lu, Jing .
EVOLVING SYSTEMS, 2025, 16 (02)
[39]   Pedestrian Trajectory Prediction via Window Attention and Spatial Graph Interaction Network [J].
Gu, Xiang ;
Li, Chao ;
Yang, Jie ;
Wang, Jing ;
Huang, Qiwei .
IEEE ACCESS, 2025, 13 :100031-100041
[40]   HoGAT: higher-order graph attention network for pedestrian trajectory prediction [J].
Chen, Wangxing ;
Sang, Haifeng ;
Zhao, Zishan .
TRANSPORTMETRICA B-TRANSPORT DYNAMICS, 2025, 13 (01)