Social Graph Transformer Networks for Pedestrian Trajectory Prediction in Complex Social Scenarios

被引:13
作者
Liu, Yao [1 ]
Yao, Lina [2 ]
Li, Binghao [3 ]
Wang, Xianzhi [4 ]
Sammut, Claude [1 ]
机构
[1] Univ New South Wales, Sch Comp Sci & Engn, Sydney, NSW, Australia
[2] Univ New South Wales, Sch Comp Sci & Engn, CSIRO, Data 61, Sydney, NSW, Australia
[3] Univ New South Wales, Sch Minerals & Energy Resources Engn, Sydney, NSW, Australia
[4] Univ Technol Sydney, Sch Comp Sci, Sydney, NSW, Australia
来源
PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022 | 2022年
关键词
Pedestrian Trajectory Prediction; Social Interaction; Spatio-temporal Graph; Transformer;
D O I
10.1145/3511808.3557455
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Pedestrian trajectory prediction is essential for many modern applications, such as abnormal motion analysis and collision avoidance for improved traffic safety. Previous studies still face challenges in embracing high social interaction, dynamics, and multi-modality for achieving high accuracy with long-time predictions. We propose Social Graph Transformer Networks for multi-modal prediction of pedestrian trajectories, where we combine Graph Convolutional Network and Transformer Network by generating stable resolution pseudo-images from Spatio-temporal graphs through a designed stacking and interception method. Specifically, we adopt adjacency matrices to obtain Spatio-temporal features and Transformer for long-time trajectory predictions. As such, we retrain the advantages of both, i.e., the ability to aggregate information over an arbitrary number of neighbors and to conduct complex time-dependent data processing. Our experimental results show that our model reduces the final displacement error and achieves state-of-the-art in multiple metrics. The module's effectiveness is demonstrated through ablation experiments.
引用
收藏
页码:1339 / 1349
页数:11
相关论文
共 50 条
[21]   GCHGAT: pedestrian trajectory prediction using group constrained hierarchical graph attention networks [J].
Lei Zhou ;
Yingli Zhao ;
Dingye Yang ;
Jingtai Liu .
Applied Intelligence, 2022, 52 :11434-11447
[22]   GCHGAT: pedestrian trajectory prediction using group constrained hierarchical graph attention networks [J].
Zhou, Lei ;
Zhao, Yingli ;
Yang, Dingye ;
Liu, Jingtai .
APPLIED INTELLIGENCE, 2022, 52 (10) :11434-11447
[23]   Social-Aware Pedestrian Trajectory Prediction via States Refinement LSTM [J].
Zhang, Pu ;
Xue, Jianru ;
Zhang, Pengfei ;
Zheng, Nanning ;
Ouyang, Wanli .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (05) :2742-2759
[24]   Global Grouped Coordinate Attention for Transformer in Pedestrian Trajectory Prediction [J].
Xiao, Jiashuai ;
Zhang, Jing ;
Li, Zilong .
SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (09)
[25]   Pedestrian trajectory prediction method based on the Social-LSTM model for vehicle collision [J].
Han, Yong ;
Lin, Xujie ;
Pan, Di ;
Li, Yanting ;
Su, Liang ;
Thomson, Robert ;
Mizuno, Koji .
TRANSPORTATION SAFETY AND ENVIRONMENT, 2024, 6 (03)
[26]   POI-GAN: A Pedestrian Trajectory Prediction Method for Service Scenarios [J].
Li, Ye ;
Zhang, Chi ;
Zhou, Jingkang ;
Zhou, Shengcui .
IEEE ACCESS, 2024, 12 :53293-53305
[27]   RDGCN: Reasonably dense graph convolution network for pedestrian trajectory prediction [J].
Sang, Haifeng ;
Chen, Wangxing ;
Wang, Jinyu ;
Zhao, Zishan .
MEASUREMENT, 2023, 213
[28]   IMGCN: interpretable masked graph convolution network for pedestrian trajectory prediction [J].
Chen, Wangxing ;
Sang, Haifeng ;
Wang, Jinyu ;
Zhao, Zishan .
TRANSPORTMETRICA B-TRANSPORT DYNAMICS, 2024, 12 (01)
[29]   AN ACCURATE SPATIAL TEMPORAL GRAPH ATTENTION NETWORK FOR PEDESTRIAN TRAJECTORY PREDICTION [J].
Zhang, Yanbo ;
Zheng, Liying .
PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2024, 25 (04) :335-346
[30]   Static-dynamic global graph representation for pedestrian trajectory prediction [J].
Zhou, Hao ;
Yang, Xu ;
Fan, Mingyu ;
Huang, Hai ;
Ren, Dongchun ;
Xia, Huaxia .
KNOWLEDGE-BASED SYSTEMS, 2023, 277