Silicon nanowires with controlled sidewall profile and roughness fabricated by thin-film dewetting and metal-assisted chemical etching

被引:63
作者
Azeredo, B. P. [1 ]
Sadhu, J. [1 ]
Ma, J. [1 ]
Jacobs, K. [1 ]
Kim, J. [1 ]
Lee, K. [1 ]
Eraker, J. H. [2 ]
Li, X. [1 ]
Sinha, S. [1 ]
Fang, N. [3 ]
Ferreira, P. [1 ]
Hsu, K. [1 ]
机构
[1] Univ Illinois, Urbana, IL 61801 USA
[2] Ball Aerosp & Technol Corp, Boulder, CO 80301 USA
[3] MIT, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
OPTICAL-ABSORPTION; ARRAYS; DIAMETER; SIZE; BAND;
D O I
10.1088/0957-4484/24/22/225305
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This paper presents a non-lithographic approach to generate wafer-scale single crystal silicon nanowires (SiNWs) with controlled sidewall profile and surface morphology. The approach begins with silver (Ag) thin-film thermal dewetting, gold (Au) deposition and lift-off to generate a large-scale Au mesh on Si substrates. This is followed by metal-assisted chemical etching (MacEtch), where the Au mesh serves as a catalyst to produce arrays of smooth Si nanowires with tunable taper up to 13 degrees. The mean diameter of the thus fabricated SiNWs can be controlled to range from 62 to 300 nm with standard deviations as small as 13.6 nm, and the areal coverage of the wire arrays can be up to 46%. Control of the mean wire diameter is achieved by controlling the pore diameter of the metallic mesh which is, in turn, controlled by adjusting the initial thin-film thickness and deposition rate. To control the wire surface morphology, a post-fabrication roughening step is added to the approach. This step uses Au nanoparticles and slow-rate MacEtch to produce rms surface roughness up to 3.6 nm.
引用
收藏
页数:8
相关论文
共 37 条
[1]   High-resolution detection of Au catalyst atoms in Si nanowires [J].
Allen, Jonathan E. ;
Hemesath, Eric R. ;
Perea, Daniel E. ;
Lensch-Falk, Jessica L. ;
Li, Z. Y. ;
Yin, Feng ;
Gass, Mhairi H. ;
Wang, Peng ;
Bleloch, Andrew L. ;
Palmer, Richard E. ;
Lauhon, Lincoln J. .
NATURE NANOTECHNOLOGY, 2008, 3 (03) :168-173
[2]   OPTICAL-ABSORPTION MEASUREMENTS OF BAND-GAP SHRINKAGE IN MODERATELY AND HEAVILY DOPED SILICON [J].
AW, SE ;
TAN, HS ;
ONG, CK .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1991, 3 (42) :8213-8223
[3]  
Azeredo B P, 2011, MAT RES S SAN FRANC
[4]   Porosity control in metal-assisted chemical etching of degenerately doped silicon nanowires [J].
Balasundaram, Karthik ;
Sadhu, Jyothi S. ;
Shin, Jae Cheol ;
Azeredo, Bruno ;
Chanda, Debashis ;
Malik, Mohammad ;
Hsu, Keng ;
Rogers, John A. ;
Ferreira, Placid ;
Sinha, Sanjiv ;
Li, Xiuling .
NANOTECHNOLOGY, 2012, 23 (30)
[5]   The Langmuir-Blodgett Approach to Making Colloidal Photonic Crystals from Silica Spheres [J].
Bardosova, Maria ;
Pemble, Martyn E. ;
Povey, Ian M. ;
Tredgold, Richard H. .
ADVANCED MATERIALS, 2010, 22 (29) :3104-3124
[6]   PREPARATION OF MONODISPERSE SILICA PARTICLES - CONTROL OF SIZE AND MASS FRACTION [J].
BOGUSH, GH ;
TRACY, MA ;
ZUKOSKI, CF .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 1988, 104 (01) :95-106
[7]   Silicon nanowires as efficient thermoelectric materials [J].
Boukai, Akram I. ;
Bunimovich, Yuri ;
Tahir-Kheli, Jamil ;
Yu, Jen-Kan ;
Goddard, William A., III ;
Heath, James R. .
NATURE, 2008, 451 (7175) :168-171
[8]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[9]   Metal-assisted chemical etching of silicon in HF-H2O2 [J].
Chartier, C. ;
Bastide, S. ;
Levy-Clement, C. .
ELECTROCHIMICA ACTA, 2008, 53 (17) :5509-5516
[10]   Nonlithographic Patterning and Metal-Assisted Chemical Etching for Manufacturing of Tunable Light-Emitting Silicon Nanowire Arrays [J].
Chern, Winston ;
Hsu, Keng ;
Chun, Ik Su ;
de Azeredo, Bruno P. ;
Ahmed, Numair ;
Kim, Kyou-Hyun ;
Zuo, Jian-min ;
Fang, Nick ;
Ferreira, Placid ;
Li, Xiuling .
NANO LETTERS, 2010, 10 (05) :1582-1588