Parkinson's disease-associated alterations of the gut microbiome predict disease-relevant changes in metabolic functions

被引:146
作者
Baldini, Federico [1 ]
Hertel, Johannes [2 ,3 ]
Sandt, Estelle [4 ]
Thinnes, Cyrille C. [2 ]
Neuberger-Castillo, Lorieza [4 ]
Pavelka, Lukas [1 ,5 ]
Betsou, Fay [4 ]
Krueger, Rejko [1 ,5 ,6 ]
Thiele, Ines [1 ,2 ,7 ,8 ]
机构
[1] Univ Luxembourg, Luxembourg Ctr Syst Biomed LCSB, Campus Belval, Esch Sur Alzette, Luxembourg
[2] Natl Univ Ireland, Sch Med, Galway, Ireland
[3] Univ Med Greifswald, Dept Psychiat & Psychotherapy, Greifswald, Germany
[4] Integrated BioBank Luxembourg, Dudelange, Luxembourg
[5] Ctr Hosp Luxembourg CHL, Parkinson Res Clin, Luxembourg, Luxembourg
[6] Luxembourg Inst Hlth LIH, Transversal Translat Med, Strassen, Luxembourg
[7] Natl Univ Ireland, Sch Nat Sci, Discipline Microbiol, Galway, Ireland
[8] APC Microbiome, Cork, Ireland
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
Parkinson's disease; Gut microbiome; Computational modelling; Metabolic modelling; Transsulfuration pathway; RIBOSOMAL-RNA GENE; SYSTEMS BIOLOGY; MOUSE; MUTATIONS; BEHAVIOR; MODEL; DIET; RISK;
D O I
10.1186/s12915-020-00775-7
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background Parkinson's disease (PD) is a systemic disease clinically defined by the degeneration of dopaminergic neurons in the brain. While alterations in the gut microbiome composition have been reported in PD, their functional consequences remain unclear. Herein, we addressed this question by an analysis of stool samples from the Luxembourg Parkinson's Study (n = 147 typical PD cases,n = 162 controls). Results All individuals underwent detailed clinical assessment, including neurological examinations and neuropsychological tests followed by self-reporting questionnaires. Stool samples from these individuals were first analysed by 16S rRNA gene sequencing. Second, we predicted the potential secretion for 129 microbial metabolites through personalised metabolic modelling using the microbiome data and genome-scale metabolic reconstructions of human gut microbes. Our key results include the following. Eight genera and seven species changed significantly in their relative abundances between PD patients and healthy controls. PD-associated microbial patterns statistically depended on sex, age, BMI, and constipation. Particularly, the relative abundances ofBilophilaandParaprevotellawere significantly associated with the Hoehn and Yahr staging after controlling for the disease duration. Furthermore, personalised metabolic modelling of the gut microbiomes revealed PD-associated metabolic patterns in the predicted secretion potential of nine microbial metabolites in PD, including increased methionine and cysteinylglycine. The predicted microbial pantothenic acid production potential was linked to the presence of specific non-motor symptoms. Conclusion Our results suggest that PD-associated alterations of the gut microbiome can translate into substantial functional differences affecting host metabolism and disease phenotype.
引用
收藏
页数:21
相关论文
共 102 条
  • [1] Metabolic Reconstruction for Metagenomic Data and Its Application to the Human Microbiome
    Abubucker, Sahar
    Segata, Nicola
    Goll, Johannes
    Schubert, Alyxandria M.
    Izard, Jacques
    Cantarel, Brandi L.
    Rodriguez-Mueller, Beltran
    Zucker, Jeremy
    Thiagarajan, Mathangi
    Henrissat, Bernard
    White, Owen
    Kelley, Scott T.
    Methe, Barbara
    Schloss, Patrick D.
    Gevers, Dirk
    Mitreva, Makedonka
    Huttenhower, Curtis
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2012, 8 (06)
  • [2] A robust ambient temperature collection and stabilization strategy: Enabling worldwide functional studies of the human microbiome
    Anderson, Ericka L.
    Li, Weizhong
    Klitgord, Niels
    Highlander, Sarah K.
    Dayrit, Mark
    Seguritan, Victor
    Yooseph, Shibu
    Biggs, William
    Venter, J. Craig
    Nelson, Karen E.
    Jones, Marcus B.
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [3] [Anonymous], 2005, AM J GASTROENTEROL, V100, pS1, DOI [10.1111/j.1572-0241.2005.50613_1.x, DOI 10.1111/J.1572-0241.2005.50613_1.X]
  • [4] Aurich MK, 2016, METHODS MOL BIOL, V1386, P253, DOI 10.1007/978-1-4939-3283-2_12
  • [5] Baldini F., 2018, Bioinformatics
  • [6] Unraveling gut microbiota in Parkinson's disease and atypical parkinsonism
    Barichella, Michela
    Severgnini, Marco
    Cilia, Roberto
    Cassani, Erica
    Bolliri, Carlotta
    Caronni, Serena
    Ferri, Valentina
    Cancello, Raffaella
    Ceccarani, Camilla
    Faierman, Samanta
    Pinelli, Giovanna
    De Bellis, Gianluca
    Zecca, Luigi
    Cereda, Emanuele
    Consolandi, Clarissa
    Pezzoli, Gianni
    [J]. MOVEMENT DISORDERS, 2019, 34 (03) : 396 - 405
  • [7] From metagenomic data to personalized in silico microbiotas: predicting dietary supplements for Crohn's disease
    Bauer, Eugen
    Thiele, Ines
    [J]. NPJ SYSTEMS BIOLOGY AND APPLICATIONS, 2018, 4
  • [8] Functional implications of microbial and viral gut metagenome changes in early stage L-DOPA-naive Parkinson's disease patients
    Bedarf, J. R.
    Hildebrand, F.
    Coelho, L. P.
    Sunagawa, S.
    Bahram, M.
    Goeser, F.
    Bork, P.
    Wuellner, U.
    [J]. GENOME MEDICINE, 2017, 9
  • [9] Discovering the false discovery rate
    Benjamini, Yoav
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 : 405 - 416
  • [10] Increasing Comparability and Utility of Gut Microbiome Studies in Parkinson's Disease: A Systematic Review
    Boertien, Jeffrey M.
    Pereira, Pedro A. B.
    Aho, Velma T. E.
    Scheperjans, Filip
    [J]. JOURNAL OF PARKINSONS DISEASE, 2019, 9 : S297 - S312