Uncovering active precursors in colloidal quantum dot synthesis

被引:31
|
作者
Frenette, Leah C. [1 ]
Krauss, Todd D. [1 ,2 ]
机构
[1] Univ Rochester, Dept Chem, Rochester, NY 14627 USA
[2] Univ Rochester, Inst Opt, Rochester, NY 14627 USA
来源
NATURE COMMUNICATIONS | 2017年 / 8卷
关键词
SINGLE-SOURCE PRECURSORS; SEMICONDUCTOR NANOCRYSTAL SYNTHESIS; CDSE NANOCRYSTALS; II-VI; FORMATION MECHANISM; GROWTH; NUCLEATION; MONODISPERSE; INSIGHTS; SELENIUM;
D O I
10.1038/s41467-017-01936-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Studies of the fundamental physics and chemistry of colloidal semiconductor nanocrystal quantum dots (QDs) have been central to the field for over 30 years. Although the photophysics of QDs has been intensely studied, much less is understood about the underlying chemical reaction mechanism leading to monomer formation and subsequent QD growth. Here we investigate the reaction mechanism behind CdSe QD synthesis, the most widely studied QD system. Remarkably, we find that it is not necessary for chemical precursors used in the most common synthetic methods to directly react to form QD monomers, but rather they can generate in situ the same highly reactive Cd and Se precursors that were used in some of the original II-VI QD syntheses decades ago, i.e., hydrogen chalcogenide gas and alkyl cadmium. Appreciating this surprising finding may allow for directed manipulation of these reactive intermediates, leading to more controlled syntheses with improved reproducibility.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Size control by rate control in colloidal PbSe quantum dot synthesis
    Capek, Richard Karel
    Yanover, Dianna
    Lifshitz, Efrat
    NANOSCALE, 2015, 7 (12) : 5299 - 5310
  • [2] Sterically Encumbered Tris(trialkylsilyl) Phosphine Precursors for Quantum Dot Synthesis
    Chandrasiri, Hashini B.
    Kim, Eun Byoel
    Snee, Preston T.
    INORGANIC CHEMISTRY, 2020, 59 (21) : 15928 - 15935
  • [3] The origin and evolution of molecular precursors for quantum dot synthesis
    Green, Mark
    MATERIALS ADVANCES, 2024, 5 (18): : 7130 - 7139
  • [4] Tutorial: Lead sulfide colloidal quantum dot infrared photodetector
    Wu, Haobo
    Ning, Zhijun
    JOURNAL OF APPLIED PHYSICS, 2023, 133 (04)
  • [5] Semiconductor clusters: Synthetic precursors for colloidal quantum dots
    Shin, Jibin
    Choi, Mahnmin
    Kim, Meeree
    Jeong, Sohee
    FRONTIERS IN NANOTECHNOLOGY, 2022, 4
  • [6] Nucleation control of quantum dot synthesis in a microfluidic continuous flow reactor
    Kim, Eun Byoel
    Tomczak, Kyle M.
    Chandrasiri, Hashini B.
    Palmai, Marcell
    Ghaznavi, Amirreza
    Gritsenko, Dmitry
    Xu, Jie
    Snee, Preston T.
    FRONTIERS IN NANOTECHNOLOGY, 2023, 4
  • [7] Machine Learning Accelerates Discovery of Optimal Colloidal Quantum Dot Synthesis
    Voznyy, Oleksandr
    Levina, Larissa
    Fan, James Z.
    Askerka, Mikhail
    Jain, Ankit
    Choi, Min-Jae
    Ouellette, Olivier
    Todorovic, Petar
    Sagar, Laxmi K.
    Sargent, Edward H.
    ACS NANO, 2019, 13 (10) : 11122 - 11128
  • [8] Accelerating colloidal quantum dot innovation with algorithms and automation
    Munyebvu, Neal
    Lane, Esme
    Grisan, Enrico
    Howes, Philip D.
    MATERIALS ADVANCES, 2022, 3 (18): : 6950 - 6967
  • [9] Colloidal Quantum Dot Solar Cells
    Carey, Graham H.
    Abdelhady, Ahmed L.
    Ning, Zhijun
    Thon, Susanna M.
    Bakr, Osman M.
    Sargent, Edward H.
    CHEMICAL REVIEWS, 2015, 115 (23) : 12732 - 12763
  • [10] Recent advances in colloidal indium phosphide quantum dot production
    Lee, Stephanie K.
    McLaurin, Emily J.
    CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY, 2018, 12 : 76 - 82