Uniform concentration inequality for ergodic diffusion processes observed at discrete times

被引:9
作者
Galtchouk, L. [1 ]
Pergamenshchikov, S. [2 ]
机构
[1] Strasbourg Univ, Dept Math, F-67084 Strasbourg, France
[2] Univ Rouen, Lab Math Raphael Salem, F-76801 St Etienne, France
关键词
Concentration inequality; Ergodic diffusion processes; Geometric ergodicity; Markov chains; Tail distribution; Upper exponential bound;
D O I
10.1016/j.spa.2012.09.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper a concentration inequality is proved for the deviation in the ergodic theorem for diffusion processes in the case of discrete time observations. The proof is based on geometric ergodicity of diffusion processes. We consider as an application the nonparametric pointwise estimation problem of the drift coefficient when the process is observed at discrete times. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:91 / 109
页数:19
相关论文
共 20 条
[1]  
[Bertail Patrice Bertail Patrice], 2009, [Теория вероятностей и ее применения, Theory of Probability and its Applications, Teoriya veroyatnostei i ee primeneniya], V54, P609, DOI 10.4213/tvp2815
[2]  
Boucheron S, 2003, ANN PROBAB, V31, P1583
[3]  
Cattiaux P., 2008, ESAIM-PROBAB STAT, V12, P12
[4]   New dependence coefficients. Examples and applications to statistics [J].
Dedecker, J ;
Prieur, C .
PROBABILITY THEORY AND RELATED FIELDS, 2005, 132 (02) :203-236
[5]   A new covariance inequality and applications [J].
Dedecker, J ;
Doukhan, P .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2003, 106 (01) :63-80
[6]   Uniform concentration inequality for ergodic diffusion processes [J].
Galtchouk, L. ;
Pergamenshchikov, S. .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2007, 117 (07) :830-839
[7]  
GALTCHOUK L, 2001, MATH METHODS STAT, V10
[8]  
Galtchouk L., 2012, GEOMETRIC ERGODICITY
[9]   Adaptive sequential estimation for ergodic diffusion processes in quadratic metric [J].
Galtchouk, L. I. ;
Pergamenshchikov, S. M. .
JOURNAL OF NONPARAMETRIC STATISTICS, 2011, 23 (02) :255-285
[10]  
Galtchouk L.I., 2006, Statistical Inference for Stochastic Processes, V9, P1, DOI [10.1007/s11203-005-3248-4, DOI 10.1007/S11203-005-3248-4]