BLOW-UP AND GLOBAL EXISTENCE OF SOLUTIONS FOR A TIME FRACTIONAL DIFFUSION EQUATION

被引:10
作者
Li, Yaning [1 ]
Zhang, Quanguo [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Coll Math & Stat, Nanjing 210044, Jiangsu, Peoples R China
[2] Luoyang Normal Univ, Dept Math, Luoyang 471022, Henan, Peoples R China
关键词
fractional calculus; blow-up; global existence; nonlinear memory; CAUCHY-PROBLEMS; CRITICAL EXPONENT; NONEXISTENCE;
D O I
10.1515/fca-2018-0085
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the blow-up and global existence of solutions to the following time fractional nonlinear diffusion equations {(C)(0)D(t)(alpha)u - Delta u = I-0(t)1-gamma (vertical bar u vertical bar(p-1)u), x is an element of R-N, t > 0, u(0,x) = u(0)(x), x is an element of R-N, where 0 < alpha < gamma < 1, p > 1, u(0) is an element of C-0(R-N), I-0(t)theta denotes left Riemann-Liouville fractional integrals of order theta. (C)(0)D(t)(alpha)u = partial derivative/partial derivative t(0)I(t)(1-alpha) (u(t, x) - u(0, x)). Let beta = 1-gamma. We prove that if 1 < p < p* = max{1 + beta/alpha,1 + 2(alpha + beta)/alpha N}, the solutions of (1.1) blows up in a finite time. If N < 2(alpha + beta)/beta, p >= p * or N >= 2(alpha + beta)/beta, p > p*, and parallel to u(0)parallel to(Lqc) (R-N) is sufficiently small, where q(c) = N alpha(p-1)/2(alpha+beta), the solutions of (1.1) exists globally.
引用
收藏
页码:1619 / 1640
页数:22
相关论文
共 50 条
  • [41] Time-Space Fractional Diffusion Problems: Existence, Decay Estimates and Blow-Up of Solutions
    Ruixin Shen
    Mingqi Xiang
    Vicenţiu D. Rădulescu
    Milan Journal of Mathematics, 2022, 90 : 103 - 129
  • [42] Blow-up of solutions for a time fractional biharmonic equation with exponentional nonlinear memory
    Zhu, Yuchen
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (11): : 5988 - 6007
  • [43] Blow-up and global solutions for a class of time fractional nonlinear reaction-diffusion equation with weakly spatial source
    Cao, Jianxiong
    Song, Guojie
    Wang, Jie
    Shi, Qihong
    Sun, Sujing
    APPLIED MATHEMATICS LETTERS, 2019, 91 : 201 - 206
  • [44] GLOBAL EXISTENCE AND BLOW-UP OF SOLUTIONS TO THE POROUS MEDIUM EQUATION WITH REACTION AND SINGULAR COEFFICIENTS
    Meglioli, Giulia
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2023, 43 (06) : 2305 - 2336
  • [45] Global existence and blow-up phenomena for a nonlinear wave equation
    Hao, Jianghao
    Zhang, Yajing
    Li, Shengjia
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (10) : 4823 - 4832
  • [46] Blow-up and global existence for a kinetic equation of swarm formation
    Lachowicz, Miroslaw
    Leszczynski, Henryk
    Parisot, Martin
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2017, 27 (06) : 1153 - 1175
  • [47] Global existence and blow-up solutions and blow-up estimates for a non-local quasilinear degenerate parabolic system
    Zhang, Rui
    Yang, Zuodong
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 200 (01) : 267 - 282
  • [48] EXISTENCE AND BLOW-UP OF SOLUTIONS FOR FRACTIONAL WAVE EQUATIONS OF KIRCHHOFF TYPE WITH VISCOELASTICITY
    Xiang, Mingqi
    Hu, Die
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (12): : 4609 - 4629
  • [49] Global existence and blow-up for a weakly dissipative μDP equation
    Kohlmann, Martin
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (14) : 4746 - 4753
  • [50] GLOBAL EXISTENCE AND BLOW-UP FOR THE FAST DIFFUSION EQUATION WITH A MEMORY BOUNDARY CONDITION
    Deng, Keng
    Wang, Qian
    QUARTERLY OF APPLIED MATHEMATICS, 2016, 74 (01) : 189 - 199